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Abstract

We propose a new texture editing operation called texture splicing. For thésatipn, we regard a texture as
having repetitive elements (textons) seamlessly distributed in a particularpafi@king two textures as input,
texture splicing generates a new texture by selecting the texton appedramcene texture and distribution from
the other. Texture splicing involves self-similarity search to extract the disioib, distribution warping, context-
dependent warping, and finally, texture refinement to preservalbe@pearance. We show a variety of results to
illustrate this operation.

Categories and Subject Descriptdescording to ACM CCS) 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Texture 1.4.7 [Image Processing and Com\isien]: Feature Measurement—Texture

1. Introduction texture splicing generates a new texture by using the texton

appearance from one texture and distribution from the other.

This operation is especially useful when a database of tex-

tures is available, in which case the user only need to specify

which texton appearance and distribution are desired—these

attributes can be inherited from different textures. An inter-

esting special case &If-splicing In this case, the two input

textures are the same and the user has to modify the distri-

bution manually to generate new textures. Figlshows a
Textures are recognizable not only by the appearance of new texture created using texture splicing.

its basic elements (textons), but also their placement dis-

tribution. The placement distribution may include transla-

tion, rotation, and scaling of textons. Example-based texture

synthesis generates textures by mimicking the texton and 2- Related Work

its placement distribution simultaneously (without separat- Most existing approaches for texture synthesis are pixel-

ing the two properties). As a result, it is difficult to generate based HB95, Deb97 EL99] or patch-basecHFOL KSE*03
new textures with dlffe_rent attr_lbutes using current example- 77V*03, KEBKOS]. While they are capable of producing
based texture synthesis algorithms.

Textures are fundamental in computer graphics, and the
topic of texture synthesis has been well-explored. The typ-
ical goal of texture synthesis is to reprodugdstingtex-
tures in different sizes, forms, and contexts (e.BlB95,
Deb97EL99 EF0L KSE*03,2ZV*03 KEBKO5)). Interest-
ingly, relatively little has been done on texture editing, where
new textures are created by modifying existing ones.

compelling-looking results, they do not explicitly separate

In this paper, we propose a new texture editing opera- the texton and its distribution. As a result, it is not apparent
tion which we calltexture splicingUnlike texture synthesis, how they can generate new textures with separate attributes.
texture splicing decomposes textures into two parts: texton

appearance and placement distribution. Given two textures, Techniques for texture editing have also been pro-

posed, for example, Texture TransfeEHO1, Image
Analogies HJO"01], and Texture Flow KEBKO05, LHO6,

T Yiming Liu and Su Xue were visiting students at Microsoft Re-  OIAIS09]. Fundamentally, these approaches generate a new
search Asia. output by transferring a given texture to an image or video;
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Figure 1: A new texture is generated by combining textons from texture A with the platdisteibution from texture B.
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Figure 2: Overview of texture splicing.

however, the new output basically retains the properties of  The technique of JHO5] allows the user to use cir-

the original texture. cular regions to manually specify position of texture tex-
tons. However, the synthesized textons are possible to ad-

There are techniques that do model the textBAd9, here partial regions of their neighboring ones when they
TTGO1,LF06] and its spatial distributiorl L HO4,HLELO6]. lie close in the source texture. Furthermore, since the fore-

Explicit modeling of such texture properties provides more ground/background area is not distinguished explicitly, the

flexibility for texture editing; it allows one property to  ser needs to manually delete textons on the synthesized tex-
be modified while preserving the other. The technique of e

[LDRO9] uses manifold diffusion distance to separate the
different texture contents in an image. It then generates new There are many approaches for texton extract\dRdsg,
textures by manipulating the decomposed parts and recom-LM96, SZ99 TTGO01, LF06, ATO7], but it is still an open
posing. However, as we shall see, there are issues with cur-problem. These approaches do not address the issue of tex-
rent approaches that limit their use. ture synthesis. Liet al. [LLHO4] propose a texture edit-
ing and analysis scheme of near-regular textures by having
In [BDOZ], a self-similarity based method is proposed to  {he yser specify the distribution. In a followup work, Hays
propagate the editing operation on a texton to the neighbor- gt g). [HLELO6] propose a technique to automatically ex-
hood regions that are self-similar. Examples of such edit- {act the texton distribution of near-regular textures through
ing operations include expanding, color editing, and warp- yegularized thin-plate spline warping. However, the methods
ing. Matusiket al. [MZDO3], on the other hand, use a more  of [LLH04, HLELOE] are limited to topology-regular distri-
global model. They represent the space of textures from a pytions. Dichleret al. [DMLCO02] propose a method to au-
database by a simplicial complex, where each vertex rep- {omatically extract the distribution by simple RGB quanti-
resents a texture. Oriented edge features in each texture areation. However, this method cannot work well for textures

used to compute warping fields and establish similarity; sim- ith connected elements or textures with closely adjacent
ilar textures are interconnected in the complex. New textures glements (e.g., brick wall textures).

are generated by nonlinear interpolation. Basically, the new

texture is a morphed version of two closest textures in the  Galet al. [GSCOO06§ propose a feature-sensitive inhomo-
complex. Other than specifying the path in the complex, the geneous texture mapping method. This method maps tex-
user has little other control over the texture to be generated. tures according to a warping functi® while preserving
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or occupies a large central area. The background is typi-
cally used to designate areas that are almost uniform. Fig-
ure 3 shows three different textures with their predefined
foregrounds and backgrounds.

Once the decision is made as to which is the foreground
and which is background, they are tagged as etilgat con-
nected(c) or rigid disjoint (d); the tagging process is done
manually. As the tag names imply, the foreground is con-
nected Tr = ¢) if it is connectedacrossneighboring textons,
and disjoint otherwiseTe = d). For the background, it can
Texture  Foreground  Background only be tagged as connectets (= ¢). The term “rigid” is
used to indicate that during texture synthesis, the foreground
or background is not to be distorted. Figyrshows exam-
ples of textures tagged in this manner. Note that it is suffi-
cientto tag a texture ag =c, T =d, orTg =cC.

Figure 3: Examples of textures and their foregrounds and
backgrounds.

The next two steps are self-similarity search (to estimate

Disjoint ), . the texton spatial distribution) and foreground-background
" e separation. Both rely on a manual initialization step. We
PO e f, .-f"‘f manually select one foreground area (from which we can
Connected compute its centgoe and sizese) and scribble on the back-
Background ..——-:[::ﬁm ground. This lets the system know the approximate shape of
Rigid e the foreground part of the texton as well as the color distri-
Connected , butions of the background and foreground.

Figure 4: Tags based on property of foreground or back- o
ground, with representative examples. 3.2. Self-Similarity Search
The step of self-similarity search is required to estimate the
spatial distribution of texton placement. We use the appear-
ance vector mapllH06] to accomplish this. This map en-
codes neighborhood information of a texture. The channels
in the appearance vector map reveal spatial structure that
Our texture splicing technique relies on a database of tex- arises from factors such as color, intensity, edge orientation,
tures from which the user chooses to produce a new texture. and patterns at different scales. From experiments, we found
Prior to its use, however, the texture database is preprocessedt is adequate to use the first 8 channels of the appearance

first. vector map for this search step.

features. The user is required to provide a feature mask and
manually specify the input warping functioi.

Our algorithm searches for self-similar locations as fol-
3. Texture Database lows: For the pixel locatiorpe (manually initialized) and
its neighborhoodNa(pe) in channela of the appear-
ance vector map, we define a similarity distribution map
Dpea Wwith respect to pixelpe and its neighborhood as
Dpea(X,y) = G(Na(pe), Na(x,y)), whereG(.,.) is a similar-
ity measure between two neighborhoods (we use normalized
cross-correlationljew95). The similarity distribution map
é)pea(x y) indicates the likelihood of neighborho®(pe)
appearing at locatiofx,y) in channela. The similarity dis-
tribution map is computed foa = 1,...,8; the actual map
Dpe used is the one with minimum entropy.

We preprocess each texture in our database to generate
the following information: foreground/background types (ei-
ther connected or disjoint]g, Tg, texton foreground (bi-
nary) maskVi(x,y), and the spatial distributiod = {p;,i =
1,..,Np}. D lists the 2D coordinateg; associated with the
placement of textond\p is the number of textons in the
sample texture. Note that the database preprocessing phas
is not completely automatic.

3.1. Foreground and Background Type The local maxima irDpe are potential candidates for tex-

For a given texture, the extent and appearance of a tex- ton locations. They are then sorted according to the similar-
ton may be spatially varying. Given a texton, we define its ity value, from highest to lowest. To determine the actual lo-

foreground and background areas (their segmentation is de-cations, our algorithm applies non-maximal suppression on
scribed in Sectior8.3). The definitions are somewhat ar- the candidates one by one, in the order they were sorted.
bitrary, but generally the foreground is used to designate a Non-maximal suppression is done by removing neighboring
structure within the texton that either is visually prominent pixels of the current candidate. The size of the neighborhood
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is determined by, which was produced in the manual ini-  polation, with non-rigid regions refined using conventional
tialization step. Our algorithm stops when 95% pixels on the texture synthesis.
similarity distribution map are either picked or removed.

4.1. Correspondence of Placement Distributions

3.3. Foreground-background Separation of Textons ) o o
Given source distributiod s and target distributiog, we

At this point, we have the following information: fore-  seek the mappindag : Da — Dg. First, we normalize the
ground mask of one texton and scribbles on the background scales ofDs and Dg such that the average distanceskto

(from manual initialization), and spatial distributidDpe nearest positions of both distributions are uniys(between
(described in the previous section). Thus, we have sam- 4 and 6, depending on texture density). We then align them
ples of foreground coloi§(F) and background coloG(B). through their centroids. We also align the orientations using

Note that= andB are thesetsof foreground and background  the Radon transfornmJKO035.

colors, respectively.
A cost matrixCag is defined as 2D distances between

We use a graph-cut segmentation algoritf&P{89 to points inDp andDg. fag is computed by minimizing the
extract the texton foreground (binary) mask. To segment the tota| cost of corresponding (unique) pairs:
foreground and background in textukewe minimize )
fap=arg min'y Cag(i, f(i)). 4)
E(La)= ) Dp(L(p))+ > > SL(p).L(@), (D) f:DA—DgiéDa
peA PEAQENs(p) We use the classical Hungarian methup57] to find the
whereLa = {L(p) € {B,F}|p € A} is a labeling ofA, L(p) global minimum.
is the label (eitheB, for background, oF, for foreground)
at pixelp, andNy(p) is the 4-neighborhood @f. Dp(-) is the
data term associated with labeling costs, wB{le(p), L(q)) 4.2. Context Dependent Deformation
is the regularization term that prefers spatial smoothness of 5 en input texture?, foreground binary mashd,, and dis-
labels. They are defined as placementsfag, we would now like to compute the dense

Dp(L(p)) =— min ||A(p) —c||2 and 2) warping fieldWag. Wag maps a poinp = (px, py) in Ato
ceC(L(p)) another pointj = (gx,qy) in B, i.e.,q = Wag(p).

B B 2502 Let us define the shifA(p) = (Ax(p),A =W, —
S(L(p).L(a))) =3(L(p) ~L(a))e AP 2o ) p; we formulate the prob(li)e)m a(s a(Frzw)ini?rSisztion gl?((j?forma-
whered(L(p) —L(q)) is 1 if L(p) # L(q), 0if L(p) = L(q). tion energy. Since deformation on a 2D plane is separable,
Note that in @), C(L(p)) = C(F) or C(B), both of which without loss of generality, we describe how we extract the
are known from the manual initialization and self-similarity ~x-component of the deformatiddy (Uy is computed in the

steps. In our experiments; = 1. The energy minimiza-  Similar way). We minimize
tion problem is modeled as a min-cut/max-flow problem
on apflow networkG, and solved using a standarF()j tech- Ex(8x) :)\GpeZDA (Bx(p) = (x(p) — px))2+

nique [FF62 EK72,BK04]. (5)

2
Given the database with the preprocessed information, we ROy (Ax(p) -5 quAx(q)> ,
can now proceed to generate new textures. From this point pIMa(p)=1 qeNs(p)

on, all the steps associated with texture splicing are auto-

matic with N4(p) being the 4-neighborhood gfandupq is a nor-

malized quantity described shortly. Each term withs its
subscript refers to its x-component. The first term tends to
4. Texture Splicing preserve displacementgg while the second term encour-
ages spatial smoothness of displacements. Since we prefer
to preservefag, we sethg > Ar (more specifically, to 1D
and 16, respectively).

Our technique is summarized in FiguzeGiven source tex-
turesA andB from the database, a new texture is generated
by setting B’s distributiorDg as the target distribution for
source texturéA. A set of discrete displacementsis es- Note that the second term is computed over pixels that
tablished to warp A's distributio®p to the target distribu- ought to be rigid only (i.e., wher®la(p) = 1). The defini-

tion Dg. A dense forward warping fieMV/ is computed using tion of which pixel should be rigid depends on the type, as
f. Depending on the foreground/background Algs com- indicated in Tablel. This enables the shape of specific parts
puted under the constraint of selective rigiditgFCO0§. of the texture to be preserved while the other parts can be
For example, if the tag is setT@ = d, the shapes of the fore-  distorted.upq is the normalized weight of each neighboring
ground elements are to preserved as much as possible. Fi-pixel: Upg = Upg/ Y gen,(p) Upa, With upg computed as fol-
nally, the new texture is generated through barycentric inter- lows:

(© 2009 The Author(s)
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Type peF peB Ap €
Te=c | Ma(p)=1| Ma(p)=0] 1 | 10°°
Te=d | Ma(P)=1| Ma(p)=0| 1 [ 10°°
Tg=C | Ma(p)=0] Ma(p)=1| O 1

Table 1: Mask values based on tag. F and B are the sets of
foreground and background pixels, respectively. Recall that
Tr and Tg are the type of foreground and background, re-
spectively; c refers to rigid connected while d refers to rigid
disjoint. Note that the cases™ d is not used.

! P
o a

Figure 5: Four special conditions on the foreground mask
Ma, any of which yields gy = Ma(q) + €. Each block rep-
resents a pixel. Black: M.) = 0, white: Ma(.) = 1, grey:
Ma(.) =1or 0 (“don't care”).

° N

|q o

Upg = Ma(q) + € if any of these conditions are meix #
Ox, or Ma(p) = Ma(q) = 0, or any one of the four condi-
tions illustrated in Figuré.

Otherwise Upg = Ap(Ma(q) +€).

The parameteg controls the consistency of foreground and
background deformations, whike controls the constraint
between horizontal and vertical borders of rigid areas. Both
depend on the texture tag (see Tahje For textures with

a rigidly connected backgroundg = c), we set\p =0 to
decouple constraints on the horizontal and vertical borders.
The seams for the red brick texture in Figrare preserved
because of this constraint decoupling. Although the bricks

are moved and scaled, their basic shapes are preserved. Fo(r)

other types of texturedp = 1.

A can be obtained using a sparse equation solver. In prac-
tice, similar as GSCOO0§, we use double back substitu-
tion to solve it. The warping field can then be computed:
Wag = | + A, wherel is the identity functionWag typically
maps to fractional pixel locations; we use barycentric inter-
polation to extract color or mask value.

More specifically, we first triangulate the source texture,
using the center of pixels as vertices. We warp each triangle
(see Figured) and rasterize it on the output texture. For each
nodeq inside a warped triangle, we use barycentric coordi-
nates to determine the inverse mappifiga(q). It is pos-
sible for a point in the output to be inside multiple warped
source triangles. In this case, we select the triangle whose
vertices have a maximum sum of texton mask values. Once
the backward mappindiga has been established, we use it
to produce the initial output textuigp.

(© 2009 The Author(s)
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4.3. Final Refinement

There are two basic problems witlagy: First,\Wga may not

be defined for all pixels in the output texture—this results in
holes. Second, rigid parts of the source texture may still be
slightly deformed, with attendant loss of visual fidelity.

We adopt Lefebvre and Hoppe’s texture synthesis
method [HO6] to handle these two problems. Suppose
Wga(q) does not exist, which creates a holgatVe remove
the hole by randomly selecting a non-rigid pixelin the
source texture, i.eWga(q) = p. This produces a hole-free
texture Tagy. We then apply the two-level multi-resolution
synthesis oT.g,, and jitter the reference positions of non-
rigid areas. This produces the final new textlixg.

5. Results

Figures7 and8 show a variety of results using our texture
splicing technique. Figure® shows results with different
texture types providing the texton appearance. (It is irrele-
vant what the texture type is for the texture providing the
distribution information.) Notice that the resulting textures
preserve either the foreground or background (depending on
the texture tag) of one texture while assuming the distribu-
tion of the other texture.

Figures8, on the other hand, shows all possible textures
that can be obtained from textures in the leftmost column
providing the texton appearance and textures in the top row
providing the distribution. This matrix is very telling—while
most results look reasonable, others show that not all texture
pairs are compatible. For example, the apple texture (8th row
inside the matrix) and water droplet texture (10th column in-
side the matrix) produced a bizarre and unattractive texture.
While this can be regarded as a “failure” case, it is not clear
what the right answer is given these two textures as input.

Self-splicing results are shown in Figur@sHere, only

ne source texture is used to create a result; the new texture
is generated by directly manipulating its distribution. The
manipulation can be in form of scaling (1), randomization
(2), arrangement into a regular pattern (3), or specific rear-
rangement (4).

Waa(A)[X

q

s

Figure 6: lllustration for backward interpolation. The blue
points in the output texture are the warped vertices of a tri-
angle. The backward warping dfis done using barycentric
coordinates.

sourc output
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Figure 7: Synthesized textures. The groups 1 (rigid connected foregroung,erc}, 2 (rigid disjoint foreground, or g = d),
and 3 (rigid connected background, og E c), are in reference to the source textures providing the texton appear@).
Combined with source textures providing the distribution information (b), eteéagget textures (c).

The pre-computation step &fnearest-neighbor searchto  can be pre-computed once and added to the texture database
build candidate sets fdt-coherence search of texture syn- (currently not done). At present, our texture synthesis oper-
thesis took on average 21.1 seconds for textures of size ation runs on the CPU. It is amenable to GPU implementa-
128x 128 and 33.6 seconds for 192192. This timing is tion, which is likely to allow our tool to run at interactive
not critical to our texture splicing operation, since this pre- speeds.
computation step constitute a once-only cost and can be done

offline. 6. Concluding Remarks

Texture splicing and self-splicing took on average 1.4 sec- We have proposetexture splicingas a novel means for tex-
onds for 128x 128 textures and 2.9 seconds for 29292 ture editing. The idea is simple: decompose each texture into
textures on a workstation with an Intel Core 2 Duo 2.66GHz texton appearance and its spatial distribution, and combine
CPU and 2GB RAM. The most expensive operation (taking the texton appearance from one texture with the distribution
> 95% of the time) is the Cholesky factorization of the left-  from another. This makes texture editing extremenly simple
hand matrix for deformation and texture synthesis. Since the for the user, as only two textures need to be specified. The
factorization does not depend on the texton displacement, it user has the option of directly editing the texton placements,

(© 2009 The Author(s)
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Figure 8: Edited textures over combinations of source textures. First colummnceoextures providing texton appearance. First
row: source textures providing distribution information. The texture withinrtiarix is the synthesized result using a source
texture from the first column and another from the first row.

which require more interaction, but provides more control pe to initialize the self-similarity search. Future extensions
on texture design. We showed a variety of results to demon- include fully automatic texton distribution extraction algo-
strate the effectiveness of texture splicing. rithm and handling of textures with a variety of texton scale

o . and rotation.
There are limitations in our current work. The self-

similarity search does not take account texton rotation and
scale. In addition, our method relies on the user-specified

(© 2009 The Author(s)
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Figure 9: Texture self-splicing results: (a) source texture, (b) manipulation ofidigion, and (c) edited texture.
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