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Abstract

The rapid popularization of digital cameras and mobile ghoameras has lead to an explosive
growth of personal photo collections by consumers. In tlaiggp, we present a real-time textual query
based personal photo retrieval system by leveraging mdliof web images and their associated rich
textual descriptions (captions, categories, etc.). Aftauser provides a textual querg.g, “water”),
our system exploits the inverted file to automatically fine fpositive web images that are related to
the textual query “water” as well as the negative web images are irrelevant to the textual query.
Based on these automatically retrieved relevant and waeleweb images, we employ three simple
but effective classification methodk, Nearest NeighborkNN), decision stumps and linear SVM, to
rank personal photos. To further improve the photo rettipesformance, we propose two relevance
feedback methods via cross-domain learning, which effelstiutilize both the web images and personal
images. In particular, our proposed cross-domain learmiathods can learn robust classifiers with only
a very limited amount of labeled personal photos from the bseleveraging the pre-learned linear
SVM classifiers in real time. We further propose an incremkecrtoss-domain learning method in order
to significantly accelerate the relevance feedback promedarge consumer photo databases. Extensive
experiments on two consumer photo datasets demonstradéf¢iotiveness and efficiency of our system,

which is also inherently not limited by any predefined lexico

Index Terms

Textual Query Based Consumer Photo Retrieval, Large-Stfale Data, Cross-Domain Learning

I. INTRODUCTION

With the rapid popularization of digital cameras and mopi®ne cameras, retrieving images
from enormous collections of personal photos has becomenaortant research topic and a
practical problem at the same time. In the recent decadeasy @antent Based Image Retrieval
(CBIR) systems [30], [33], [34], [47] have been proposededdé systems usually require users
to provide example images as queries in order to retrieveopat photos, i.e., under the query
by example framework. However, the paramount challengeBiRGs the so-called semantic
gap between the low-level visual features and the hightlsemantic concepts. To bridge the
semantic gap, relevance feedback methods were proposedrtothe user’s intentions.

For consumer applications, it is more natural for the useretdeve the desirable personal

photos using textual queries. To this end, image annotégicommonly used to classify images
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with respect to a set of high-level semantic concepts. Thiske used as an intermediate stage
for textual query based image retrieval because the secrm@oricepts are analogous to the textual
terms that describe document contents. In general, imagetaion methods can be classified
into two categories, learning-based methods and web det@domethods [22]. Learning-based
methods build robust classifiers based on a fixed corpus efddltraining data, and then use
the learned classifiers to detect the presence of the predetioncepts in the test data. On the
other hand, as an emerging paradigm, web data-based méévedsge millions of web images
and the associated rich textual descriptions for image tatina.

Recently, Changt al.presented the first systematic work for consumer video atioot Their
system can automatically detect 25 predefined semanticeptgcincluding occasions, scenes,
objects, activities and sounds [6]. Observing that thegekphotos are usually organized into
collections by time, location and events, Cetoal.[3] proposed a label propagation method to
propagate the concept labels from part of personal imagégetother photos in the same album.
In [22], Jiaet al.proposed a web-based annotation method to obtain the comtdabels for
image clusters only, followed by a graph-based semi-sug@iviearning method to propagate
the conceptual labels to the whole photo alboum. Howeverptaio the initial annotations, the
users are required to describe each photo album using tdrtuas, which are then submitted
to an online image server (such Blckr.com) to search for thousands of images related to the
keywords. Therefore, the annotation performance of thithotedepends heavily on the textual
terms provided by the users and the search quality of the melge server.

In this work, we propose a real-time textual query basedergtl system, which directly
retrieves the desirable personal photos without undeggamy intermediate image annotation
process. Our work is motivated by the advancedNeb 2.0and the recent advances of web
data-based image annotation techniques [22], [25], [34],[[38], [39], [41], [42]. Everyday,
rich and massive social media data (texts, images, audidsos, etc.) are posted to the web.
Web images are generally accompanied by rich contextuatnmdtion, such as tags, categories,
titles, and comments. In particular, we have downloadedualio3 million images and the
correspondindnigh qualitysurrounding textual descriptions (titles, categoriescdgtions, etc.)

from photo forumPhotosig.corh Note that in contrast t&lickr.com the quality of the images

http://www.photosig.com/
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from this source can be considered higher and visually mbegacteristic of semantics of the
corresponding textual descriptions. After the user presid textual querye(g, “water”), our
system exploits the inverted file to automatically retri¢he positive web images, which have
the textual query “water” in the surrounding descriptioas,well as the negative web images,
whose surrounding descriptions do not contain the quentewand its descendants (such as
“meltwater”, “freshwater”, etc.) according td/ordNet[15]. The inverted file method has been
successfully used in information retrieval to efficientlpdiall text documents where a given
word occurs [44]. Based on these automatically retrievesitipe and negative web images, we
employ classifiers, including Nearest Neighbori(NN), decision stump ensemble, and linear
SVM, to rank the photos in the personal collections. Obsgrtinat the total number of negative
web images is much larger than the total number of positivie weages, we randomly sample
a fixed number of negative samples and combine these samfleshe positive samples for
training decision stump ensemble and SVM classifiers. @mas in [33], the whole procedure
is repeated multiple times by using different randomly sktipegative web images and the
average output from multiple rounds is finally used for raleesumer photo retrieval.

To improve the retrieval performance in CBIR, relevancelbeek has been frequently used to
help acquire the search intention from the user. Howevestmsers would prefer to label only
a few images in a limited feedback, which frequently degsaithe performance of the typical
relevance feedback algorithms [17], [47]. A brute-forc&uon is to use a large number of web
images and a limited amount of feedback images for releviaemback. However, the classifiers
trained from both the web images and labeled consumer immagggerform poorly because the
feature distributions from these two domains can be di@stidifferent. To address this problem,
we further propose two cross-domain learning methods tonleabust classifiers (referred to
as target classifiers) using only a limited number of labdetiback images by leveraging
the pre-learned classifier (referred to as auxiliary cfess$i Cross-domain methods have been
used in real applications, such as sentiment classifigatexh categorization, and video concept
detection [2], [11], [12], [13], [23], [46]. However, thesaethods are either variants of SVM
or in tandem with non-linear SVM or other kernel methods, imgkt inefficient for large-scale
applications. In addition, the recent cross-domain le@ymorks on image annotation [12], [13],
[23], [46] only cope with the cross-domain cases on newsosdsaptured from different years

or different channels. In contrast, this work tackles a narallenging cross-domain case from
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the web image domain to the consumer photo domain.

Specifically, we first proposed a simple cross-domain legrmiethod by directly combining
the auxiliary classifier and SVM learned in the target domaimen, we propose Cross-Domain
Regularized Regression (CDRR) by introducing a new regaton term into regularized re-
gression. This regularization term enforces a constrainh ghat the target classifier produces
similar decision values as the auxiliary classifier on thialkled consumer photos. Our exper-
iments demonstrate that the two cross-domain learning adstlean significantly improve the
photo retrieval performance. To significantly accelerat relevance feedback process on large
consumer photo databases, we further propose an incrdnoeoss-domain learning method,
referred to as Incremental CDRR, by incrementally updatiregcorresponding data matrices.

It is worth noting that the techniques usedGoogleimage search cannot be directly used for
textual query based consumer photo retrieGalogleimage searchcan only retrieve web images
which are identifiable by rich semantic textual descripgigsuch as filename, surrounding texts,
and URL). However, raw consumer photos from digital came@sot contain such semantic
textual descriptions. In essence, we exploit a large-smallection of web images and their rich
surrounding textual descriptions as the training data 1p hetrieve the new input data in the
form of raw, unlabeled consumer photos.

The main contributions of this paper include:

« We introduce a new framework for textual query based consyoheto retrieval by lever-
aging millions of web images and their associated rich &xescriptions. This framework
is also inherently not limited by any predefined lexicon.

« Our proposed cross-domain learning approaches furtherowepthe photo retrieve per-
formance by using the pre-learned classifier (auxiliansgifger) from a large number of
loosely labeled web images, and a small number of preciablgiéd consumer photos from
relevance feedback. To the best of our knowledge, this ifingtetime that the cross-domain
learning methods are used for relevance feedback. Our-dassain learning methods
also outperform two conventional manifold ranking and SVilséd relevance feedback
methods[17], [47].

o Our proposed Incremental CDRR is a novel incremental adossain learning method,

2Fergus et al. proposed to use parts-based model to im@oegleimage search results in [16].
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which is suitable for relevance feedback in large-scalesgorer photo retrieval applications.
« Our system achieves real-time response thanks to the cenhbificiency of decision stump
ensemble classifier and linear SVM classifier, IncremenEdRR, and a number of speed-up
techniques, including the utilization of the inverted filetimod to efficiently search relevant
and irrelevant web images, PCA to reduce feature dimenaimh,computation on multiple

threads.

A preliminary version of this work appeared in [27]. In thiager, we additionally use linear
SVMs for initial photo retrieval and propose Incremental RID to achieve real-time retrieval
performance on large photo datasets. This paper also g®wadditional experiments on the
large NUS-WIDE dataset [8]. Moreover, we also systematically investighte efficiency and
effectiveness of linear SVM classifier and decision stumgearble classifier for initial photo
retrieval, as well as compare the retrieval performancesadly fusion and late fusion schemes
for fusing three types of global featureise(, Grid Color Moment, Edge Direction Histogram
and Wavelet Texture).

The remainder of this paper is organized as follows. Sestiband Il provide brief reviews of
two related areas, content based image retrieval and inmageation. The proposed textual query
based consumer photo retrieval system will be introduceSiction IV. Extensive experimental

results will be presented in Section V, followed by conchglremarks in the final section.

[l. RELATED WORK IN CONTENT BASED IMAGE RETRIEVAL (CBIR)

Over the past two decades, a large number of CBIR systemshearedeveloped to retrieve
images from image databases in the hope for returns seraliyntielevant to the user’'s query
image. Interested readers can refer to two comprehensiveysuin [32], [10] for more details.
However, in consumer applications, it is more conveniertt aatural for a user to supply a
textual query when performing image retrieval.

It is well-known that the major problem in CBIR is the semargap between the low-level
features (color, texture, shape, etc.) and the high-leselasitic concepts. Relevance feedback
has proven to be an effective technique to improve the xetrigerformance of CBIR systems.
The early relevance feedback methods directly adjustedviights of various features to adapt
to the user’s intention [30]. In [48], Zhou and Huang promgb&sased Discriminant Analysis

(BDA) to select a small set of discriminant features from agéafeature pool for relevance
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feedback. Support Vector Machines (SVM) based relevanegbieck techniques [33], [34], [47]
were also proposed. The above methods have demonstratesprg performance for image
retrieval, when a sufficient number of labeled images areketaby the users. However, users
typically mark a very limited number of feedback images dgrihe relevance feedback process,
and this practical issue can significantly degrade theesedtiperformance of these techniques
[30], [33], [34], [47], [48]. Semi-supervised learning [1®1] and active learning [21], [34] have
also been proposed to improve the performance of imagevatriHe [19] used the information
from relevance feedback to construct a local geometricaplyrto learn a subspace for image
retrieval. Hoiet al.[21] applied active learning strategy to improve the retrleperformance
of Laplacian SVM. However, these methods usually requir@ifoll assumption of unlabeled
images, which may not hold with unconstrained consumergshot

In this paper, we propose a real-time, textual query baseigval system to directly retrieve
the desired photos from personal image collections by #égieg millions of web images together
with their accompanying textual descriptions. We furtheopomse two efficient cross-domain
relevance feedback methods to learn robust classifiersfégtigely utilizing the rich but perhaps
loosely annotated web images as well as the limited feedbaekes marked by the user. In
addition, we also propose Incremental CDRR (ICDRR), anemantal cross-domain learning
method, to significantly accelerate the relevance feedlpaokess on large consumer photo
dataset.

1. RELATED WORK IN IMAGE ANNOTATION

Image annotation is an important task and closely relatechége retrieval. The methods can
be classified into two categories, learning-based methondsaeeb data-based methods [22]. In
learning-based methods [3], [6], [24], robust classifialsd called models or concept detectors)
are first learned based on a large corpus of labeled trairgtg, dind then used to detect the
presence of the concepts in any test data. However, thentue@ning-based methods can only
annotate at most hundreds of semantic concepts [29], be¢hasoncept labels of the training
samples need to be obtained through time consuming and €xpdmman annotation.

Recently, web data-based methods were developed and tletseds can be used to annotate
general images. Torralbet al.[35] collected about 80 million tiny images (color imagestwi

the size of 32 by 32 pixels), each of which is labeled with om&mfrom WordNet They
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demonstrated that with sufficient samples, a siniiN classifier can achieve reasonable per-
formance for several tasks such as image annotation, seeognition, and person detection and
localization. Subsequently, Torrallea al.[36] and Weis<et al.[43] also developed two indexing
methods to speed up the image search process by represeatihgmage with less than a few
hundred bits. Zhang and his colleagues have also proposedes ®f works [25], [38], [39],
[41], [42] to utilize images and the associated high qualégcriptions (such as surrounding title
and category) in photo forume.g, Photosig.comand Photo.ne} to annotate general images.
For a given query image, their system first searches for airrmages among those downloaded
images from the photo forums, and then “borrows” represmetaand common descriptions
(concepts) from the surrounding descriptions of theselainiinages as the annotation for the
guery image. The initial system [41] requires the user tovid® at least one accurate keyword
to speed up the search efficiency. Subsequently, an appatiyet efficient indexing technique
was proposed, such that the user no longer needs to provideokd#s [25]. An annotation
refinement algorithm [38] and a distance metric learninghoet[39] were also proposed to
further improve the image annotation.

It is possible to perform textual query based image retlibyausing image annotation as
an intermediate stage. Since the image annotation proeesisrio be performed before textual
qguery based consumer photo retrieval, the user needs trpeirhage annotation again to assign
these new textual terms to all the personal images, whendhetext queries provided by the
user are out of the current set of vocabularies. In additieese image annotation methods do

not provide a metric to rank the images.

IV. TEXTUAL QUERY BASED CONSUMER PHOTO RETRIEVAL

In this Section, we will present our proposed framework ow ho utilize a large collection
of web images to assist image retrieval using textual queryccénsumer photos from personal
collections. It is noteworthy that myriads of web images adily available on thénternet
These web images are usually associated with rich textsariggions (referred to as surrounding
texts hereon) related to the semantics of the web imageseTsierounding texts can be used
to extract high-level semantic labels for the web imagesaut any cost of labor-intensive
annotation efforts. In this framework, we propose to appighsvaluable Internet assets to

facilitate textual query based image retrieval. Recall the consumer photos (from personal
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collections) are usually organized in folders without anglexing structure to facilitate textual
gueries. To automatically retrieve consumer photos usrtual queries, we choose to leverage
millions of web images and their surrounding texts as thddaibetween the domains of the

web images and the consumer photos.

Large Collection of
Web Images
with surrounding texts

Raw Consumer Photos

(

Automatic Web Image
Retrieval
Top-Ranked Refined Top-Ranked

WordNet Consumer Consumer Photos
Photos

5 -

Relevant/ N
Irrelevant [ Y Classifiers
Web Images

Relevance
Feedback

Consumer Photo
Retrieval

Textual
Query

Fig. 1. Textual Query Based Consumer Photo Retrieval System

A. Proposed Framework

The architecture of our proposed framework is depicted gufe 1. It consists of several
machine learning modules. The first module of this framewskutomatic web image retrieval,
which first interprets the semantic concept of textual qggehly a user. Based on the semantic
concept andWordNet the sets of relevant and irrelevant web images are rettiénam the
web image database using the inverted file method [44]. Thensemodule then uses these
relevant and irrelevant web images as a labeled trainingosetin classifiers (such as\N,
decision stumps, SVM, and boosting). These classifiers laga tised to retrieve potentially
relevant consumer photos from personal collections. Tinéurimprove the retrieval performance,
relevance feedback and cross-domain learning techniqeesrmployed in the last module to

refine the image retrieval results.

B. Automatic Web Image Retrieval

In this framework, we first collect a large set of web imageghwurrounding texts related to
a set of almost all the daily-life semantic conce@tsfrom Photosig.comStop-word removal

is also used to remove frofi, the high-frequency words that are not meaningful. Then, we

January 4, 2010 DRAFT



10

assume such a large-scale web image database containgestiffitages to cover almost all the
daily-life semantic concepts in a personal collection.hge construct the inverted file, which
has an entry for each worgin C,, followed by a list of all the images that contain the word
¢ in the surrounding texts.

For any textual query;, we can efficiently retrieve all web images whose surrougdexts
contain the word, by using the pre-constructed inverted file. These web imegede deemed as
relevant images. For irrelevant web images, we WeedNet[15], [35], which models semantic
relationships for commonly-used words, to define th&sets the descendant textsqfFigure 2
shows the subtree representing the two-level descendénie deyword “water” inWordNet
Based on this subtree, one can retrieve all irrelevant wedg@s that do not contain any word
in C, in the surrounding texts. Thereafter, we can denote thesenatically annotated (relevant
and irrelevant) web images &8’ = (x, yi)|i=,, wherex? is theith web image ang}’ € {+1}

is the label ofx}".

C. Consumer Photo Retrieval

As discussed in Section IV-B, with the surrounding texts, @@ automatically obtain
annotated web image®™ based on the textual query. These annotated web images can be
used as the training set for building classifiers. Any cléssi (such as SVM or Boosting) can
be used in our framework. However, considering that the sfzbe web images iD* can be
up to millions, direct training of complex classifiers (¢.gonlinear SVM and Boosting) may
not be feasible for real-time consumer photo retrieval. Werdfore choose three simple but
effective classifiers, namely Nearest Neighbor classifier, decision stump ensembleifiéass
and linear SVM classifier. Note that boosting using decistumps has shown the state-of-the-
art performance in face detection [37], in which the tragnof boosting classifier is performed
in an offline way. Boosting is not suitable for our real-timeline photo retrieval application
because of its high computational cost.

1) k£ Nearest Neighbors¥or the given relevant web images in“ (i.e, web images with
y = 1), the simplest method to retrieve the target consumer ghistto compute the average
distance between each consumer photo an# itsarest neighborglN) from the relevant web
images (saysy = 300). Then, we rank all consumer photos with respect to the geetizsstances

to their k£ nearest neighbors.
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meltwater

rain condensate

Fig. 2. The subtree representing the two-level descenddriisater” in WordNet

2) Asymmetric Bagging with Decision Stumpsote that thekNN approach cannot account
for the irrelevant photos for consumer photo retrieval. figiove the retrieval performance,
we also use the relevant and irrelevant web imageB®'into train a decision stump ensemble
classifier. In particular, the size of the irrelevant imageg to millions) can be much larger
than that of the relevant images, so the class distributio@f can be extremely unbalanced.
To avoid such a highly skewed distribution in the annotatedt wnages, following the method
proposed in [33], we randomly sample a fixed number of irehweb images as the negative
samples, and combine with the relevant web images as théveasamples to construct a smaller
training set.

After sampling, a decision stump;(x) = h(sq(zq — 04)) is learned by finding the sign
sq € {£1} and the threshold, € R of the dth featurez, of the inputx such that the threshold
0, separates both classes with a minimum training e¢goon the smaller training set. For
discrete outputh(z) is the sign function, that isi(z) = 1 if x > 0; andh(z) = —1, otherwise.
For continuous outputi(x) can be defined as the symmetric sigmoid activation funciien,
h(z) = %ﬂ We observe that it is difficult to rank the consumer photosubing discrete
output because the responses of many consumer photos asantleein this case. In this work,
we therefore use the continuous outputhof). The threshold); can be determined by sorting
all samples according to the featurg, and scanning the sorted feature values. In this way, the
decision stump can be found efficiently. Next, the weighteskeenbles of these decision stumps

are computed for prediction, i.e.,

Fox) = yah(sa(wa = 0a)), 1)

where the weighty, for each stump is set t0.5 — ¢, ande, is the training error rate of théth

decision stump classifier. Note that is further normalized such that, v, = 1.
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To remove the possible side effect of random sampling of tredevant images, the whole
procedure is repeated, times by using different randomly sampled irrelevant welages.
Finally, the average output is used for robust consumergleitieval. This sampling strategy
is also known as Asymmetric Baggih{3].

After asymmetric bagging with decision stumps, thererane; decision stumps. We remove
the 20% decision stumps with the largest training errorstalédis removal process generally
preserves the most discriminant decision stumps, and asdhee time accelerates the initial
photo retrieval process.

3) Asymmetric Bagging with Linear SVMWhile decision stump ensemble classifier can
effectively exploit both relevant and irrelevant web plin Dv, it is inefficient to use this
classifier on a large consumer photo dataset because aleti®ah stumps need to be applied
on every test photo in the testing stage. Suppose we ftraip decision stump classifiers, where
ng IS the feature dimension and, is the random sampling times for generating the negative
samples in asymmetric bagging. Then, for each test imag#eldecision stumps need to be
applied in the test stage, which means the floating value edsgn and the calculation of
exponential function in symmetric sigmoid function will Iperformed for0.8n,n, times even
after removal of 20% decision stumps with the largest tregr@rror rates. Moreover, one decision
stump classifier only account for one single dimension ofwhele feature space. Thus, each
individual classifier may be still too weak.

To facilitate large scale consumer photo retrieval, we psapto use linear SVM classifier
based on loosely labeled web images. Considering that thkertomber of irrelevant web images
is much larger than that of relevant web images, we also natsa smaller training set by
combining the positive web images and randomly sampledtivegaeb images. As suggested
in [20], feature vectors are normalized into unit hyperexels in the kernel spateAssume

that fsyva(x) = wix + b, is the decision classifier, we then train the linear SVM dfassby

3In [33], the base classifier used in asymmetric bagging islimear SVM.

“For linear SVM, normalization in kernel space is equivalenhormalization in input space.
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minimizing the following objective functional:
1 2
§||Ws|| + Csvimr Z@'
st gl (wixl +0) > 1-&, )

where¢; is the slack variable and'sy, is the tradeoff parameter.
We also repeat the whole procedure for times by using different random samples of

irrelevant web images. Finally, the average output is useddbust consumer photo retrieval:

Fx) = 7eg(Wix +bs) 3)

where~, = 0.5 — ¢, €, is the training error of the-th linear SVM classifier, ang(x) is the
sigmoid activation function. Againy, is normalized such that__ ~, = 1.

4) Decision Stumps vs. Linear SVIWith the samen,, in general, it takes more time to train
a linear SVM classifier than a decision stump ensemble fi@ssHowever, the prediction of
asymmetric bagging with linear SVM is much faster. For eadt tlata, there are onhy, times
of the calculation of exponential function in (3). Moreoyvier the experiments, we observe that
linear SVM usually achieves comparable or even betterenettiperformances, possibly because
it simultaneously considers multiple feature dimensiofserefore, we generally prefer linear

SVM for large-scale consumer photo retrieval.

D. Relevance Feedback via Cross-Domain Learning

With Relevance Feedback (RF), we can obtain a limited nunobeelevant and irrelevant
consumer photos from the user to further refine the imagevatrresults. However, the feature
distributions of photos from different domains (web imagesl consumer photos) may differ
considerably and thus have very different statistical proes (in terms of mean, intra-class and
inter-class variance). To differentiate the images froeséhtwo domains, we define the labeled
and unlabeled data from the consumer photosDds= (x7,y! )|, and DI = xT | ",
respectively, whereg;! € {41} is the label ofx!. We further denoteD™ as the data set from
the source domain, an®” = D! U DI as the data set from the target domain with the size

Ny = Ng + Ny,.
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1) Cross-Domain Learning:To utilize all training data from both consumer photos (&trg
domain) and web images (source domain) for image retriema¢, can apply cross-domain
learning methods [45], [46], [11], [7], [23], [12], [13]. Yay et al.[46] proposed Adaptive Support
Vector Machine (A-SVM), where a new SVM classifi¢f (x) is adapted from an existing
auxiliary SVM classifierf*(x) trained with the data from the source domain. Specificafig, t

new decision function is formulated as:

FH(x) = (%) + Af (%), (4)

where the perturbation functioA f(x) is learned using the labeled dafg’ from the target
domain. As shown in [46], the perturbation function can berned by solving quadratic pro-
gramming (QP) problem which is similar to that of SVM.

Besides A-SVM, many existing works on cross-domain leayrattempted to learn a new
representation that can bridge the source domain and et @domain. Jiangt al.[23] proposed
cross-domain SVM (CD-SVM), which usésnearest neighbors from the target domain to define
a weight for each auxiliary pattern, and then the SVM classii trained with re-weighted
samples. Daume Il [11] proposed the Feature Augmentatiethod to augment features for
domain adaptation. The augmented features are used tawcnatkernel function for kernel
methods. It is important to note that most cross-domaimlagrmethods [45], [46], [11], [23]
do notconsider the use of unlabeled data in the target domain.rdgc®uanet al.proposed
a cross-domain kernel-learning method, referred to as DoM@nsfer SVM (DTSVM) [12],
and a multiple-source domain adaptation method called Dordaptation Machine (DAM)
[13]. These methods can be readily used to exploit the data froth source domain and target
domain for relevance feedback component in our generalopfettieval framework. However,
these methods are either variants of SVM or in tandem with-lm@ar SVM or other kernel
methods. Therefore, these methods are not efficient enaundarfje-scale retrieval applications.
Therefore, we propose two effective and efficient cross-aommethods for relevance feedback.

2) Cross-Domain Combination of Classifierso further improve photo retrieval performance,
a brute-force solution is to combine the web images and tinetated consumer photos to re-
train a new classifier. However, the feature distributiohglootos from different domains are
drastically different, causing such classifier to perforoofy. Moreover, it is also inefficient

to re-train the classifier using the data from both domainsofdine relevance feedback. To
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significantly reduce the training time, the decision stunmgsegnble classifier and the linear
SVM classifier f*(x) discussed in Section IV-C can be reused as the auxiliansifikes for
relevance feedback. Here, we propose a simple cross-ddesining method, referred to as
Cross-Domain Combination of Classifiers (CDCC), by simpiynbining the source classifier
learned from the labeled data in the source dondain and the target classifier (non-linear SVM
with RBF kernel, referred to as SVNI) learned from limited labeled data in the target domain
DI. The output of SVMT is also converted into the rande-1,1] by using the symmetric
sigmoid activation function and then the outputs of soutlessifier and SVMT are combined
with equal weights.

Schweikert et al. [31] also proposed to combine the sourassdier and the target classifier
for cross-domain learning. However, the source classiedun their work is non-linear SVM
with RBF kernel. It will be shown in our experiments such dimear SVM cannot be used as
the source classifier in this application because it canciuiege real-time retrieval performance
even on a small test dataset. Moreover, our system is thewiodt to apply Cross-Domain
Combination of Classifiers for relevance feedback in phetaeval applications.

3) Cross-Domain Regularized Regressiddesides CDCC, we also introduce a new learning
method, namely Cross-Domain Regularized Regression (QDIRREhe following, we denote the
transpose of vector or matrix by a supersctigtor thei-th samplex;, we denotef! = f7(x;)
and ff = f*(x;), where f7(x) is the target classifier and®(x) is the pre-learnt auxiliary
classifier. Let us also denotg” = [f],..., fI] andy/ = [y{,...,y]]'. The empirical risk

functional of f7(x) on the labeled data in the target domain is:

ny

D =D = =l (5)
=1
For the unlabeled target patteriy’ in the target domain, let us define the decision values
from the target classifier and the auxiliary classifier g5 = [f} ,,....fL] and fi =

%

Lfs 41,5 f5,), respectively. We assume that the target classjffeix) should have similar
decision values as the pre-computed auxiliary classffiéx) [13]. We propose a regularization
term to enforce the constraint that the label predictionshef target decision functiorf” (x)

on the unlabeled dat®? in the target domain should be similar to the label predittiby the
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auxiliary classifierf*(x) (see Figure 3)i.e.,

nr

DA

i:nl—i-l

1 T s)12
s 70— £ (6)
We simultaneously minimize the empirical risk of labeledtg@ans in (5) and the penalty term
in (6). The proposed method is then formulated as follows:

1

21,

min(7)+ 0 (N =571+ 567 - £ G

whereQ(f7) is a regularizer to control the complexity of the target sifisr 7 (), the second
term is the prediction error of the target classifféi(x) on the target labeled patterig’, and
the last term controls the agreement between the targedifed@sand the auxiliary classifier on
the unlabeled samples iZ, andC' > 0 and X > 0 are the tradeoff parameters for the above
three terms. Note that we use the facggf in the last term because we have very limited labeled

data (less than 10 samples in our experiments) and much méabealed consumer photos.

Consumer
Photos

Labeled
Photos

Unlabeled
Photos

Relevant/
Irrelevant
Web Images

Prediction

Fig. 3. lllustration of Cross-Domain Regularized Regressi

Assume that the target decision function is a linear regmadsinction,i.e., f7(x) = w'x for

image retrieval, and the regularizer @6/”) = 1|lw||?, the optimal projection vectow in the

structural risk functional (7) can be solved by a linear syst

(I + CAX X + ngXuX;) w = C\X}y, + ngXufj, (8)
whereX; = [x{,...,x] JandX, = [x] ,,...,x] | are the data matrix of labeled and unlabeled
consumer photos, andis the identify matrix. Finally, we have the closed-formgan:

L O o) ;L Oy
w= I+ CXX X+ —X,X], CAXyy; + n—Xufu : 9
Um u
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4) Incremental Cross-Domain Regularized Regressionthe past several years, many incre-
mental learning methods [1], [4] have been proposed for dsiom reduction and classification.
In this work, we propose an incremental cross-domain legrmethod, referred to as Incre-
mental Cross-Domain Regularized Regression (ICDRR),goifscantly accelerate the relevance
feedback process in large-scale consumer photo retrieval.

In our ICDRR, we incrementally update two matricAs = X, X;, A, = X, X, and two
vectorsb, = Xjy;, by = X, f; in Eq. (9). Let us denoté\;, A, by, by in the r-th round
of relevance feedback as\”, A, bl”, b\, respectively. Before relevance feedbatk.(the
0-th round), we initializeA” = 0, AL = X X', b” =0, bl = X f*, where X is the data
matrix of all consumer photogf® is the output of source classifier on all consumer photos. In

the r-th round of relevance feedback, we then incrementally tgpda, A,, b; andb, by:

AP =AY (AX)(AX) (10)
Ay = ALY —(AX)(AX) (11)
b”  =b{""+(AX)(Ay) (12)
by) =b{V — (AX)(Af). (13)

In the above equationg) X € R"*" Ay € R" and Af° € R" are the data matrix, label
vector, and the response vector from source classifier ohéldy labeled consumer photos in
the current round, where, is the number of user-labeled consumer photos in this rotihd.
user only labels a very limited number of consumer photosacheaound of relevance feedback,
the computational cost for updating!”, A, bl and b{” becomes trivial in our ICDRR.
Moreover, Ago) = X X'’ can be computed offline because it does not depend on theesourc
classifier, andago) = X f* can be computed when the user inspects the initial retriegallt (it
costs less than 0.15 seconds with one single CPU thread evd#medargeNUS-WIDEdataset
with about 270K images). Therefore in our experiments, waatacount the time for calculating
A andb”. It will be shown in the experimental results that ICDRR sfigantly accelerates

the relevance feedback process for large scale photovatrie

V. EXPERIMENTS

We evaluate the performance of our proposed framework fduae query based consumer

photo retrieval. First, we compare the initial retrievatfpemances oftNN classifier, decision
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stump ensemble classifier, and linear SVM classifighout using relevance feedback. Second,
we evaluate the performance of our proposed cross-domigvaree feedback methods CDCC
and CDRR.

A. Dataset and Experimental Setup

We have downloaded about 1.3 million photos from the photarfoPhotosig as the training
dataset. Most of the images are accompanied by rich suriogitektual descriptionse(g, title,
category and description). After removing the high-freggyewords that are not meaningfé.g,
“the”, “photo”, “picture”), our dictionary contains 21,37words, and each image is associated
with about five words on the average. Similarly to [42], weoatdbserved that the images in
Photosig generally are high quality with the sizes varyingnt 300 x 200 to 800 x 600. In
addition, the surrounding descriptions reasonably desdfie semantics of the corresponding
images.

We test the performance of our retrieval framework on twasets. The first test dataset is
derived (under a usage agreement) from the Kodak Consundeo\Benchmark Dataset [28],
which was collected by Eastman Kodak Company from about &@Dusers over the period of
one year. In this dataset, 5,166 key-frames (the image sagsfrom 320 x 240 to 640 x 480)
were extracted from 1,358 consumer video clips. Key-framseld annotation was performed by
the students at Columbia University to assign binary lafy@lesence or absence) for each visual
concept. 25 semantic concepts were defined, including 2&Mt®ncepts and three audio-related
conceptsi(e.“singing” , “music” and “cheer”). We also merge two concefgroupof_two” and
“group.of_threeor_more” into a single concept “people” for the convenience edirshing the
relevant and irrelevant images from the Photosig web imageaseét. Observing that the key
frames from the same video clip can be near duplicate imageselect only the first key frame
from each video clip in order to perform a fair comparison ifedent algorithms. In total, we
test our framework on 21 visual concepts and with 1,358 irmage

The second dataset MUS-WIDHS], which was recently collected by the National Univeysit
of Singapore (NUS). In total, this dataset has 269,648 imanel their ground-truth annotations
for 81 concepts. The images MUS-WIDEdataset are downloaded from the online consumer
photo sharing website Flickr.com. We choos&S-WIDE dataset because it is the largest

annotated consumer photo dataset available to researduzg and is suitable for testing the
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performances of our framework for large-scale photo reditieMoreover, it is also meaningful to
use this dataset to test the retrieval precisions of oursedosnain relevance feedback methods
CDCC and CDRR because the data distributions of photos adased from different websites
(i.e., Photosig.com and Flickr.com) are still different. It is@aworth mentioning that the images
in NUS-WIDEare used as raw photos, in other words, we do not considersseciated tag
information in this work.

In our experiments, we use three types of global featuresGiFid Color Moment (GCM), we
extract the first three moments of three channels in the LABrcspace from each of thex 5
fixed grid partitions, and aggregate the features into desidg5-dimensional feature vector. The
Edge Direction Histogram (EDH) feature includes 73 dimensiwith 72 bins corresponding
to edge directions quantized in five angular bins and one @mbn-edge pixels. Similar to
[8], we also extract 128> Wavelet Texture (WT) feature by performing Pyramid-stanetd
Wavelet Transform (PWT) and Tree-structured Wavelet Tans (TWT). Finally, each image
is represented as a singl26-D vector by concatenating the three types of global featUPéease
refer to [8] for more details about the features. While it @sgible to use other local features,
such as SIFT descriptors, we use the above global featuremude they can be efficiently
extracted over the large image corpus and they have beemsiwoie effective for consumer
photo annotation in [6], [8]. It is also convenient for faissssment of other known systems
that use the same types of visual features.

For the training datasephotosig we calculate the original mean valyg, and standard
deviations, for each dimensiod, and normalize all dimensions to zero mean and unit variance
We also normalize the test datasei®.( Kodak and NUS-WIDB by using i,y and o,. In
our experiment, all algorithms are implemented with C++.tftaand vector operations are
performed using the Intel Math Kernel Library 10. Experinseare performed on a server
machine with dual Intel Xeon 3.0GHz Quad-Core CPUs (eighgatlis) and 16GB Memory. In
time cost analysis, we do not consider the time of loadingdédwa from the hard disk because

the data can be loaded for once and then used for subsequatgsju

B. Retrieval without Relevance Feedback

Considering that the queries by the CBIR methods and ourdnark are different in nature,
we cannot compare our work directly with the existing CBIRtinoels before relevance feedback.
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Fig. 4. Number of randomly selected positive samples foheamcept in the training web image database.

We also cannot compare the retrieval performance of ourdveork directly with web data-based
annotation methods, because of the following two aspegt§hése prior works [25], [35], [36],
[38], [41], [42] only output binary decisions (presence bsence) without providing a metric to
rank the personal photos; 2) An initial textual term is regdibefore image annotation in [22],
[41], [42] and their annotation performances depend hgarilthe correct textual term, making
it difficult to compare their methods fairly with our autontatechnique. However, we notice
that the previous web data-based image annotation metR&§is[85], [36], [38], [41], [42] all
usedkNN classifier for image annotation, possibly owning to imglicity and effectiveness.
Therefore, we directly compare the retrieval performanicdezision stump ensemble classifier,
linear SVM classifier, and the baselia®IN classifier.

Suppose a user wants to use the textual quety retrieve the relevant personal images.
For both methods, we randomly select= min(10000, n,) positive web images frorphotosig
dataset, where, is the total number of images that contain the weid the surrounding textual
descriptions Kodak and NUS-WIDE contains 94 distinct concepts in total (*animal”, “beach”,
“boat”, “dancing”, “person”, “sports”, “sunset” and “wedd)y’ appear in both datasets). The
average number of selected positive samples of all the 9deqis is 3088.3, and Figure 4 plots
the number of positive samples for each concept.

To improve the speed and reduce the memory cost, we perfarmoipal Component Analysis
(PCA) using all the images in the photosig dataset. We alsgstigate the performances of two
possible fusion methods to fuse three types of global featur this application.

. Early Fusion: We concatenate the three types of features before perigridfCA. We

observe that the first, = 103 principal components are sufficient to prese$0&; energy.
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After dimension reduction, all the images in training anst datasets are projected into the
103-D space for further processing.

« Late Fusion: We perform PCA on three types of features independentlyoWéerve that
the firstng, = 91, ng = 24, ngz = 5 principal components are sufficient to presed0&:
energy for GCM, EDH and WT features, respectively. Thens¢hiree types of features of
all the images in the training and test datasets are praoigote,-D, ng-D, ng3-D space
after dimension reduction. We train independent classifiesed on each type of feature.
Finally, the classifiers from different features are ligaombined with the combination
weights determined based on the training error rates.

For each fusion method, we compare the following three nustho

« KNN_S: We only use the positive images from the web-image datahbssle training data.
For each consumer photo from the testing dataset, we finabfhe mearest neighbors in the
positive images, and use the average distance to measurelé¢hance between the textual
guery to the testing consumer photo. In the experiment, weé se200. We also perform
exhaustive exactNN search accelerated by SIMD CPU instructions and multipteads.
For kNN based method with late fusion, we combine the outputslcfMN classifiers with
equal weights because the training error ratéNN classifier on each type of feature is
unknown in this case. In the sequel, we denadt¥N_S with early fusion and late fusion by
ENN_SE andkNN_SL, respectively.

. DS.S: We randomly choose,, negative samples for, times, and in total we traimsn,
decision stumps for early fusion (referred to as BE) or3nn, (referred to as DSL) for
late fusion. After removing the 20% decision stumps with ldgest training error rates,
we apply0.8n,n, or 2.4n,n, decision stumps for the testing stage in BE and DSSL,
respectively.

. LinSVM_S: We also randomly choose, negative samples fa, times. In total, we train
n, linear SVM classifiers for early fusion (referred to as LIfN8\SE) or3n, classifiers for
late fusion (referred to as LinSVML). In this work, we use tools from LibLinear [14] in
our implementations and use the default value 1 for the pat@m'sy ;.

There are 21 and 81 concept names fromKbedak dataset andNUS-WIDEdataset, respec-

tively. They are used as textual queries to perform imageevet. Precision (defined as the
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percentage of relevant images in the topetrieved images) is used as the performance measure
to evaluate the retrieval performance. Since online usersisually interested in the top ranked
images only, we sef as 20, 30, 40, 50, 60 and 70 for this study, similarly to in [33]

1) Comparison of precisionWe tested all the methods above for initial retrieval withosing
relevance feedback. Fdfodak dataset, we set the random sampling timgsfor generating
negative samples as 50 for O3 and DSSL, and 10 for LinSVMSE and LinSVMSL in
order to make the running time of initial retrieval processler 1 second. The precisions of all
methods are shown in Figure 5. We observe thatSES DSSL, LinSVM_SE and LInSVMSL
are much better thahNN_SE andkiNN_SL. This is possibly becauseNN_SE andkNN_SL
only utilize the positive web images while other methodsetaklvantage of both the positive
and negative web images to train the more robust classifoseover, the average values of the
top-20,30,40,50,60 and 70 precisions from LinS\M8U, DS SL, LInSVM_SE and DSSE, are
14.50%, 14.47%, 14.39% and 14.21%, respectively. We cdediat the linear SVM classifier

and decision stump ensemble classifier achieve comparetoieval performances on thédak

dataset.

0.18 -
0.16 1 = LinSVM_SE
0.14 - _

c 012 - mLinSVM_SL

(=]

@ 0.1 A mDS SE

8 0.08 -

& o006 - mDS_SL
0.04 - = KNN_SE
0'03 T = KNN_SL

20 30 40 50 60 70

Number of retrieved images

Fig. 5. Retrieval precisions usifgNN classifier, decision stump ensemble classifier, and ig&M classifier on the Kodak

dataset (1358 images, 21 concepts).

To better compare the performances of different algorithwes also test them on the large
NUS-WIDE dataset. In Figure 6, we plot the precision variations ofed#nt algorithms with
respect to different values of;, in which n, is set to 1,3,5,7 and 10. We have the following
observations:

1) Again, kENN_SE andkNN_SL achieve much worse performances, when compared with the
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Fig. 7. Top-10 retrieval results for query “water” on the léddataset. Incorrect retrieval results are highlightethwgireen

boxes.

other four algorithms. LInSVMSL generally achieves the best results and it is slightlyebet
than DSSL in most cases.

2) Whenn, increases, DSSE, DSSL, LinSVM_SE, and LinSVMSL improve in most cases,
which is consistent with the recent work [33].

3) It is interesting to observe that LINSVI®EE is the worst among four algorithms related to
linear SVM and decision stump ensemble classifiers. We gntplee types of features (color,
edge and texture) in this work and it is well known that noneh&m can work well for all
concepts. LINSVMSL, DSSL and DSSE achieve better performance, possibly because they
can fuse and select different type of features or even featimensions based on the training
error rates.

4) Except forkNN classifier based algorithms, we also observe that thduaten based methods
are generally better than the corresponding early fusisedanethods for photo retrieval on the
NUS-WIDEdatasetkNN_SL is worse tharkNN_SE. However, ifcNN_SL, all types of features
are combined with equal weights, namely, feature selegtiorot performed inkNN_SL.
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Fig. 8. Top-10 retrieval results for query “animal” on the B{WIDE dataset. (a) Initial results; (b) Results after 1nbwf
relevance feedback (one positive and one negative imagelsitagled in each round). Incorrect results are highlightedreen

boxes.

A visual example is shown in Figure 7. We use the keyword “vdte retrieve images from
the Kodak dataset using LInSVMSL with 10 SVM classifiers. Note that this queryuadefined
in the concept lexicon of th&odak dataset. Our retrieval system produces eight diverse yet
relevant images out of the top 10 retrieved images. One msualMexample of our system using
LinSVM_SL with 10 SVM classifiers is shown in Figure 8(a). We use thgakard “animal” to
retrieve images from thBUS-WIDEdataset (“animal” is defined in the concept lexicorNdiS-
WIDE). Our retrieval system produces six relevant images out@fop 10 retrieved images. In
the subsequent subsection, we will show that our proposeBFCEelevance feedback method
can significantly improve the retrieval performance (Segufé 8(b)).

2) Comparison of running timeWe also compare the running time of all algorithms on the
two datasets. In this work, each decision stump classifidrS¥M classifier can be trained and
used independently, and exhaustildN search is also easy to parallelize. We therefore use a
simple but effective parallelization scheme, OpenMP, k& tadvantages of eight threads of our
server for each method.

On theKodakdatasetxNN_SE andkNN_SL spend 0.872 and 1.033 seconds, respectively, for
the initial retrieval process. DSE and DSSL with n, = 50, LinSVM_SE and LinSVMSL with
ns, = 10 spend 0.912, 0.969, 0.830, and 0.852 seconds, respectMelynethods can achieve
real-time retrieval performance on this small dataset.

The comparison of the running time on theJS-WIDEdataset is plotted in Figure 9. On this
dataset ANN_SE andkNN_SL spend 213.35 and 225.73 seconds, respectively. We ineplem
ENN based on exhaustive search, thus it takes much more tinea wbmpared with decision
stump ensemble classifier and linear SVM classifier. Whens 10, the total running time
of LInSVM_SE, LinSVM.SL, DS SE and DSSL are 0.782, 0.878, 1.373 and 1.575 seconds,
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Fig. 9. Time cost of retrieval using decision stumps and S\With linear kernel on NUS-WIDE dataset (269,648 images, 81

concepts). Note that “total time” stands for the sum of irntime and testing time.

respectively. We also observe that LINSVBE and LinSVMSL generally cost more time
than DSSE and DSSL in the training stage. However, the testing stage of LINSSE and

LinSVM_SL is much faster, making the total running time of initiatrieval process much
shorter than DSSE and DSSL.

3) Discussions:From the experiments on th€odak dataset, we observe that linear SVM
and decision stump ensemble classifiers based methods aeealiye comparable in terms of
initial retrieval precision and speed. Since all the algpons can achieve real-time speed, any of
them can be used for initial retrieval on a small dataset. él@w for large-scale photo retrieval,
LinSVM_SL is preferred for the initial retrieval process becausisoéffectiveness and real-time

response.

C. Retrieval with Relevance Feedback (RF)

In this subsection, we evaluate the performance of a fewaalse feedback methods. For fair
comparison, we choose LInSVI8L with 10 SVM classifiers, the best algorithm in terms of ever
all performances (See Section V-B), for initial retrievaifdre relevance feedback. LinSVBIL
is also accordingly chosen as the source classifier in oungdstCDCC and CDRR. From here
on, we also refer to CDCC as LIinSVI8L+SVM_T, in which the responses from LinSVI8L
and SVMT are equally combined. In our LinSVML+SVM_T, CDRR and two conventional
manifold ranking and SVM based relevance feedback algostfil7], [47], we also adopt the
late fusion scheme used in LInSVBL to integrate the three types of global features, namely,
the three types of features are used independently at ficstttean decisions or responses are
finally fused. The early fusion approach is used for the padarss-domain learning method
A-SVM [46] because it is faster.
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We compare our LINSVMBL+SVM_T method and CDRR with the following methods:

1) SYM_T: SVM has been used for RF in several existing CBIR method§ [33], [47]. We
train non-linear SVM with an RBF kernel based on the labeladges in the target domain,
which are marked by the user in the current and all previousds. We use LibSVM package
[5] in our implementation and use its default setting for Rigfnel {.e. C is set as 1 and in
RBF kernel is set ag;, 5; and+ for GCM, EDH and WT features, respectively).

2) MR: Manifold Ranking (MR) is a semi-supervised RF method pegubin [17]. The two
parametersy and~ for this method are set according to [17].

3) A-SVM: Adaptive SVM (A-SVM) is a recently proposed method [46] foross-domain
learning as described in Section IV-D.1, in which SVM basaedao RBF kernel is used as the
source classifier to obtain the initial retrieval resultbeTparameter setting is the same as that
in SVM_T. Considering the running time of A-SVM is much higher thahey methods even
on the smallKodak dataset, we do not test it on the laly&/S-WIDEdataset because it cannot
achieve real time response.

As in other methods [17], [46], [47], several parametersdedeto be decided beforehand.
In LiInSVM_SL+SVM_T, we need to determine the parameters in SYMnd we use the same
parameters setting as that in SVYM For CDRR, we empirically fixC' = 70.0 and set\ = 0.05
on theKodakdataset and\ = 0.02 on theNUS-WIDEdataset. In addition, we also observe that
CDRR generally achieves better performance, if we resgagtsety! = 1 andy! = —0.1 for
positive and negative consumer photos, when compared hétbdtting;” = 1 andy! = —1. We
sety! = —0.1 for negative images because the negative images markecthysér in relevance
feedback are still top ranked images, namely, these imagasodh theextremelynegative images.
Note that similar observations are also reported in [17% $till an open problem to automatically
determine the optimal parameters in CDRR, which will be stigated in the future.

1) Comparison of precisionin real circumstances, users typically would be reluctant t
perform many rounds of relevance feedback or annotate nmageas for each round. Therefore,
we only report the results from the first four rounds of feexkbdn each feedback round, the top
one relevant imagd.é., the highest ranked image with the same semantic concepedsxtual
guery) is marked as a positive feedback sample from amontpthd0 images. Similarly, one
negative sample is marked out of the top 40 images. In Fig(lsg &e show top-10 retrieved

images after 1 round of relevance feedback for the queryntahiion the NUS-WIDEdataset.
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Fig. 10. Retrieval results after relevance feedback(orstipe and one negative feedbacks per round) on the Kodaselat

(1358 images, 21 concepts).

We observe that the results are improved considerably asieg our proposed CDRR relevance
feedback algorithm. Figures 10 and Figure 11 compare difterelevance feedback methods on
the Kodak dataset and thBlUS-WIDEdataset, respectively.

From these results, we have the following observations:

1) Our CDRR and LinSVMSL+SVM_T outperform the conventional RF methods SVivand
MR, because of the successful utilization of the images flomth domains. When comparing
CDRR with SVM.T and MR, the relative precision improvements after RF areentioan 14.7%
and 13.5% on th&odak and NUS-WIDEdatasets, respectively. CDRR is generally better than
or comparable with LInSVMSL+SVM_T, and the retrieval performances of our CDRR and
LinSVM_SL+SVM_T increase monotonically with more labeled images providgdhe user in
most cases. For CDRR, we believe that the retrieval perfocenaan be further improved by
using non-linear function in CDRR. However, it is a nonda@ivtask to achieve the real-time

retrieval performance with an RBF kernel function. Thislveié investigated in the future.

2) For SVM.T, the retrieval performance drops after the first round of RRF increase from the
second iteration. The explanation is that SVIMrained based on two labeled training images
is not reliable, but its performance can improve when mobelled images are marked by the

user in the subsequent feedback iterations.
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Fig. 11.
(269,648 images, 81 concepts).

Retrieval results after relevance feedback(orgtipe and one negative feedbacks per round) on the NUS atatas

Method | ICDRR | CDRR | LiNSVM_SL+SVM_T | SYM_T | MR | A-SVM
Time 0.015 0.032 0.015 0.015 | 0.037 9.92
TABLE |

AVERAGE CPUTIME (IN SEC.) OF RELEVANCE FEEDBACK(PER ROUND) ON THE KODAK DATASET.

3) Semi-supervised learning method MR can improve theenedtiperformance only in some

cases on th&odak dataset, possibly because the manifold assumption doesotatwell for

unconstrained consumer images.

4) The performance of A-SVM is slightly improved after usiRfF in most cases. It seems

that the limited number of labeled target images from the @se not sufficient to facilitate
robust adaptation for A-SVM. We also observe that initia@ulés of A-SVM is better than other

algorithms on th&Kodak dataset because of the utilization of non-linear SVM fotiatization.

However, it takes 324.3 seconds with one thread for thealnrgtrieval process even on the

small-scaleKodak dataset, making it infeasible for practical image retriemaplications even

with eight threads.

2) Comparison of running timetn this Section, we compare the running time of all relevance

feedback algorithms used in our experiment. Consideriag dh the algorithms except A-SVM

and MR on theNUS-WIDEdataset are very responsive, we test all the algorithms ing wly
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Method | ICDRR | CDRR | LINSVM_SL+SVM_T | SVM_T MR
Time 0.110 1.534 1.277 1.277 | 60.533

TABLE Il

AVERAGE CPUTIME (IN SEC.) OF RELEVANCE FEEDBACK(PER ROUND ON THE NUS-WIDE DATASET.

one single thread for relevance feedback.

The comparison of time cost on thk®dakdataset is shown in Table I. All methods except A-
SVM are able to achieve the interactive speed on this smedkda In addition, the incremental
cross-domain learning method ICDRR is faster than CDRR.

In Table Il, we report the running time of different algomtlk on theNUS-WIDEdataset. MR
is no longer responsive in this case because the label prtpagrocess based on the graph with
much more vertices becomes much slower. The RF process oRCGID LInSVM.SL+SVM_T
(or SVM.T) is still responsive (1.534 seconds and 1.277 second9,dmd#gause we only need
to train SVM with less than 10 training samples for LInNSVBL+SVM_T and SVM.T or solve
a linear system for CDRR.

Moreover, ICDRR only takes about 0.1 seconds per round afteementally updating the
corresponding matrices, which is much faster than CDRR. e abserve that the running
time of LiInSVM_SL+SVM_T (or SVM_T) increases when the number of user-labeled consumer
photos increases in the subsequent iterations. Spegifiddlien the user labels 1, 2, 3, 4 positive
consumer photos and the same number of negative photosyMnSL+SVM_T (or SVM_T)
costs about 0.7, 1.1, 1.5 and 1.9 seconds, respectivelyet®dWCDRR takes about 0.1 seconds
in all the iterations.

In short, ICDRR can learn the same projection vectorand achieve the same retrieval
precisions as CDRR, but it is much more efficient than CDRR Ainé&VM _SL+SVM_T for
relevance feedback in large scale photo retrieval.

VI. CONCLUSIONS

By leveraging a large collection of web data (images accaoneplby rich textual descriptions),
we have proposed a real-time textual query based person&b petrieval system, which can
retrieve consumer photos without using any intermediategenannotation process. For a given

textual query, our system can automatically and efficierglyieve relevant and irrelevant web
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images using the inverted file method awbrdNet With these retrieved web images as the
training data, we employ three efficient classification rod#) kNN classifier, decision stump
ensemble classifier and linear SVM classifier, for consuntat retrieval. We also propose
two novel relevance feedback methods, namely CDCC and CDRRIilizing the pre-learned
auxiliary classifier and the feedback images to effectiveiprove the retrieval performance at
interactive response time. Moreover, an incremental edogsain learning method, referred to
as ICDRR, is also developed for large scale consumer phtieval.

Extensive experimental results on tkedakandNUS-WIDEconsumer photo datasets clearly
demonstrate that decision stump ensemble and linear SVasitiers based methods are much
better thankNN based methods for initial photo retrieval. Linear SVMsddier based method
is preferred on a large photo dataset likéJS-WIDE thanks to its effectiveness and faster
and real-time response. Our experiments also demonstiatéhie proposed relevance feedback
approaches CDRR and LinSVEL+SVM_T require an extremely limited amount of feedback
from the user and it outperforms two conventional manif@dking and SVM based relevance
feedback methods, and Incremental CDRR is much faster tbdRCand LinNSVMSL+SVM_T
on the largeNUS-WIDE dataset. Moreover, our proposed system can also retriengunoer
photos with a textual query that is not included in the predefilexicons.

In summary, we have proposed a general photo retrieval framkeby using textual query.
Our work falls into the recent research trend bfternet Visiori where the massive and valuable
web data including texts and images are used for various gtanpision and computer graphics
tasks (e.g., [9], [18], [40]). Other efficient and effectil@arning techniques can be readily
developed and incorporated into our framework to furthepriome the initial photo retrieval
and relevance feedback. For example, the fast Stochastiséttion Kernel MAchine (SIKMA)
training algorithm may be used in our framework for initidqto retrieval [40] and non-linear
functions may be employed in CDRR to replace the currenélinegression function. In addition,
this framework also lends itself to personal video retridaecause key frames in videos can be
used to retrieve videos readily for non-motion related uakigueries. In the long run, such a
framework can also be extended to process action relatexpts[26] by explicitly incorporating

motion related features.
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