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Abstract

The rapid popularization of digital cameras and mobile phone cameras has lead to an explosive

growth of personal photo collections by consumers. In this paper, we present a real-time textual query

based personal photo retrieval system by leveraging millions of web images and their associated rich

textual descriptions (captions, categories, etc.). Aftera user provides a textual query (e.g., “water”),

our system exploits the inverted file to automatically find the positive web images that are related to

the textual query “water” as well as the negative web images that are irrelevant to the textual query.

Based on these automatically retrieved relevant and irrelevant web images, we employ three simple

but effective classification methods,k Nearest Neighbor (kNN), decision stumps and linear SVM, to

rank personal photos. To further improve the photo retrieval performance, we propose two relevance

feedback methods via cross-domain learning, which effectively utilize both the web images and personal

images. In particular, our proposed cross-domain learningmethods can learn robust classifiers with only

a very limited amount of labeled personal photos from the user by leveraging the pre-learned linear

SVM classifiers in real time. We further propose an incremental cross-domain learning method in order

to significantly accelerate the relevance feedback processon large consumer photo databases. Extensive

experiments on two consumer photo datasets demonstrate theeffectiveness and efficiency of our system,

which is also inherently not limited by any predefined lexicon.

Index Terms

Textual Query Based Consumer Photo Retrieval, Large-ScaleWeb Data, Cross-Domain Learning

I. INTRODUCTION

With the rapid popularization of digital cameras and mobilephone cameras, retrieving images

from enormous collections of personal photos has become an important research topic and a

practical problem at the same time. In the recent decades, many Content Based Image Retrieval

(CBIR) systems [30], [33], [34], [47] have been proposed. These systems usually require users

to provide example images as queries in order to retrieve personal photos, i.e., under the query

by example framework. However, the paramount challenge in CBIR is the so-called semantic

gap between the low-level visual features and the high-level semantic concepts. To bridge the

semantic gap, relevance feedback methods were proposed to learn the user’s intentions.

For consumer applications, it is more natural for the user toretrieve the desirable personal

photos using textual queries. To this end, image annotationis commonly used to classify images
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with respect to a set of high-level semantic concepts. This can be used as an intermediate stage

for textual query based image retrieval because the semantic concepts are analogous to the textual

terms that describe document contents. In general, image annotation methods can be classified

into two categories, learning-based methods and web data-based methods [22]. Learning-based

methods build robust classifiers based on a fixed corpus of labeled training data, and then use

the learned classifiers to detect the presence of the predefined concepts in the test data. On the

other hand, as an emerging paradigm, web data-based methodsleverage millions of web images

and the associated rich textual descriptions for image annotation.

Recently, Changet al.presented the first systematic work for consumer video annotation. Their

system can automatically detect 25 predefined semantic concepts, including occasions, scenes,

objects, activities and sounds [6]. Observing that the personal photos are usually organized into

collections by time, location and events, Caoet al.[3] proposed a label propagation method to

propagate the concept labels from part of personal images tothe other photos in the same album.

In [22], Jia et al.proposed a web-based annotation method to obtain the conceptual labels for

image clusters only, followed by a graph-based semi-supervised learning method to propagate

the conceptual labels to the whole photo album. However, to obtain the initial annotations, the

users are required to describe each photo album using textual terms, which are then submitted

to an online image server (such asFlickr.com) to search for thousands of images related to the

keywords. Therefore, the annotation performance of this method depends heavily on the textual

terms provided by the users and the search quality of the web image server.

In this work, we propose a real-time textual query based retrieval system, which directly

retrieves the desirable personal photos without undergoing any intermediate image annotation

process. Our work is motivated by the advances inWeb 2.0and the recent advances of web

data-based image annotation techniques [22], [25], [35], [36], [38], [39], [41], [42]. Everyday,

rich and massive social media data (texts, images, audios, videos, etc.) are posted to the web.

Web images are generally accompanied by rich contextual information, such as tags, categories,

titles, and comments. In particular, we have downloaded about 1.3 million images and the

correspondinghigh qualitysurrounding textual descriptions (titles, categories, descriptions, etc.)

from photo forumPhotosig.com1. Note that in contrast toFlickr.com, the quality of the images

1http://www.photosig.com/
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from this source can be considered higher and visually more characteristic of semantics of the

corresponding textual descriptions. After the user provides a textual query (e.g., “water”), our

system exploits the inverted file to automatically retrievethe positive web images, which have

the textual query “water” in the surrounding descriptions,as well as the negative web images,

whose surrounding descriptions do not contain the query “water” and its descendants (such as

“meltwater”, “freshwater”, etc.) according toWordNet[15]. The inverted file method has been

successfully used in information retrieval to efficiently find all text documents where a given

word occurs [44]. Based on these automatically retrieved positive and negative web images, we

employ classifiers, includingk Nearest Neighbor (kNN), decision stump ensemble, and linear

SVM, to rank the photos in the personal collections. Observing that the total number of negative

web images is much larger than the total number of positive web images, we randomly sample

a fixed number of negative samples and combine these samples with the positive samples for

training decision stump ensemble and SVM classifiers. Similar as in [33], the whole procedure

is repeated multiple times by using different randomly sampled negative web images and the

average output from multiple rounds is finally used for robust consumer photo retrieval.

To improve the retrieval performance in CBIR, relevance feedback has been frequently used to

help acquire the search intention from the user. However, most users would prefer to label only

a few images in a limited feedback, which frequently degrades the performance of the typical

relevance feedback algorithms [17], [47]. A brute-force solution is to use a large number of web

images and a limited amount of feedback images for relevancefeedback. However, the classifiers

trained from both the web images and labeled consumer imagesmay perform poorly because the

feature distributions from these two domains can be drastically different. To address this problem,

we further propose two cross-domain learning methods to learn robust classifiers (referred to

as target classifiers) using only a limited number of labeledfeedback images by leveraging

the pre-learned classifier (referred to as auxiliary classifier). Cross-domain methods have been

used in real applications, such as sentiment classification, text categorization, and video concept

detection [2], [11], [12], [13], [23], [46]. However, thesemethods are either variants of SVM

or in tandem with non-linear SVM or other kernel methods, making it inefficient for large-scale

applications. In addition, the recent cross-domain learning works on image annotation [12], [13],

[23], [46] only cope with the cross-domain cases on news videos captured from different years

or different channels. In contrast, this work tackles a morechallenging cross-domain case from
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the web image domain to the consumer photo domain.

Specifically, we first proposed a simple cross-domain learning method by directly combining

the auxiliary classifier and SVM learned in the target domain. Then, we propose Cross-Domain

Regularized Regression (CDRR) by introducing a new regularization term into regularized re-

gression. This regularization term enforces a constraint such that the target classifier produces

similar decision values as the auxiliary classifier on the unlabeled consumer photos. Our exper-

iments demonstrate that the two cross-domain learning methods can significantly improve the

photo retrieval performance. To significantly accelerate the relevance feedback process on large

consumer photo databases, we further propose an incremental cross-domain learning method,

referred to as Incremental CDRR, by incrementally updatingthe corresponding data matrices.

It is worth noting that the techniques used inGoogleimage search cannot be directly used for

textual query based consumer photo retrieval.Googleimage search2 can only retrieve web images

which are identifiable by rich semantic textual descriptions (such as filename, surrounding texts,

and URL). However, raw consumer photos from digital camerasdo not contain such semantic

textual descriptions. In essence, we exploit a large-scalecollection of web images and their rich

surrounding textual descriptions as the training data to help retrieve the new input data in the

form of raw, unlabeled consumer photos.

The main contributions of this paper include:

• We introduce a new framework for textual query based consumer photo retrieval by lever-

aging millions of web images and their associated rich textual descriptions. This framework

is also inherently not limited by any predefined lexicon.

• Our proposed cross-domain learning approaches further improve the photo retrieve per-

formance by using the pre-learned classifier (auxiliary classifier) from a large number of

loosely labeled web images, and a small number of precisely labeled consumer photos from

relevance feedback. To the best of our knowledge, this is thefirst time that the cross-domain

learning methods are used for relevance feedback. Our cross-domain learning methods

also outperform two conventional manifold ranking and SVM based relevance feedback

methods[17], [47].

• Our proposed Incremental CDRR is a novel incremental cross-domain learning method,

2Fergus et al. proposed to use parts-based model to improveGoogle image search results in [16].
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which is suitable for relevance feedback in large-scale consumer photo retrieval applications.

• Our system achieves real-time response thanks to the combined efficiency of decision stump

ensemble classifier and linear SVM classifier, Incremental CDRR, and a number of speed-up

techniques, including the utilization of the inverted file method to efficiently search relevant

and irrelevant web images, PCA to reduce feature dimension,and computation on multiple

threads.

A preliminary version of this work appeared in [27]. In this paper, we additionally use linear

SVMs for initial photo retrieval and propose Incremental CDRR to achieve real-time retrieval

performance on large photo datasets. This paper also provides additional experiments on the

large NUS-WIDEdataset [8]. Moreover, we also systematically investigatethe efficiency and

effectiveness of linear SVM classifier and decision stump ensemble classifier for initial photo

retrieval, as well as compare the retrieval performances ofearly fusion and late fusion schemes

for fusing three types of global features (i.e., Grid Color Moment, Edge Direction Histogram

and Wavelet Texture).

The remainder of this paper is organized as follows. Sections II and III provide brief reviews of

two related areas, content based image retrieval and image annotation. The proposed textual query

based consumer photo retrieval system will be introduced inSection IV. Extensive experimental

results will be presented in Section V, followed by concluding remarks in the final section.

II. RELATED WORK IN CONTENT BASED IMAGE RETRIEVAL (CBIR)

Over the past two decades, a large number of CBIR systems havebeen developed to retrieve

images from image databases in the hope for returns semantically relevant to the user’s query

image. Interested readers can refer to two comprehensive surveys in [32], [10] for more details.

However, in consumer applications, it is more convenient and natural for a user to supply a

textual query when performing image retrieval.

It is well-known that the major problem in CBIR is the semantic gap between the low-level

features (color, texture, shape, etc.) and the high-level semantic concepts. Relevance feedback

has proven to be an effective technique to improve the retrieval performance of CBIR systems.

The early relevance feedback methods directly adjusted theweights of various features to adapt

to the user’s intention [30]. In [48], Zhou and Huang proposed Biased Discriminant Analysis

(BDA) to select a small set of discriminant features from a large feature pool for relevance
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feedback. Support Vector Machines (SVM) based relevance feedback techniques [33], [34], [47]

were also proposed. The above methods have demonstrated promising performance for image

retrieval, when a sufficient number of labeled images are marked by the users. However, users

typically mark a very limited number of feedback images during the relevance feedback process,

and this practical issue can significantly degrade the retrieval performance of these techniques

[30], [33], [34], [47], [48]. Semi-supervised learning [19], [21] and active learning [21], [34] have

also been proposed to improve the performance of image retrieval. He [19] used the information

from relevance feedback to construct a local geometrical graph to learn a subspace for image

retrieval. Hoi et al.[21] applied active learning strategy to improve the retrieval performance

of Laplacian SVM. However, these methods usually require manifold assumption of unlabeled

images, which may not hold with unconstrained consumer photos.

In this paper, we propose a real-time, textual query based retrieval system to directly retrieve

the desired photos from personal image collections by leveraging millions of web images together

with their accompanying textual descriptions. We further propose two efficient cross-domain

relevance feedback methods to learn robust classifiers by effectively utilizing the rich but perhaps

loosely annotated web images as well as the limited feedbackimages marked by the user. In

addition, we also propose Incremental CDRR (ICDRR), an incremental cross-domain learning

method, to significantly accelerate the relevance feedbackprocess on large consumer photo

dataset.

III. RELATED WORK IN IMAGE ANNOTATION

Image annotation is an important task and closely related toimage retrieval. The methods can

be classified into two categories, learning-based methods and web data-based methods [22]. In

learning-based methods [3], [6], [24], robust classifiers (also called models or concept detectors)

are first learned based on a large corpus of labeled training data, and then used to detect the

presence of the concepts in any test data. However, the current learning-based methods can only

annotate at most hundreds of semantic concepts [29], because the concept labels of the training

samples need to be obtained through time consuming and expensive human annotation.

Recently, web data-based methods were developed and these methods can be used to annotate

general images. Torralbaet al.[35] collected about 80 million tiny images (color images with

the size of 32 by 32 pixels), each of which is labeled with one noun from WordNet. They

January 4, 2010 DRAFT



8

demonstrated that with sufficient samples, a simplekNN classifier can achieve reasonable per-

formance for several tasks such as image annotation, scene recognition, and person detection and

localization. Subsequently, Torralbaet al.[36] and Weisset al.[43] also developed two indexing

methods to speed up the image search process by representingeach image with less than a few

hundred bits. Zhang and his colleagues have also proposed a series of works [25], [38], [39],

[41], [42] to utilize images and the associated high qualitydescriptions (such as surrounding title

and category) in photo forums (e.g., Photosig.comand Photo.net) to annotate general images.

For a given query image, their system first searches for similar images among those downloaded

images from the photo forums, and then “borrows” representative and common descriptions

(concepts) from the surrounding descriptions of these similar images as the annotation for the

query image. The initial system [41] requires the user to provide at least one accurate keyword

to speed up the search efficiency. Subsequently, an approximate yet efficient indexing technique

was proposed, such that the user no longer needs to provide keywords [25]. An annotation

refinement algorithm [38] and a distance metric learning method [39] were also proposed to

further improve the image annotation.

It is possible to perform textual query based image retrieval by using image annotation as

an intermediate stage. Since the image annotation process needs to be performed before textual

query based consumer photo retrieval, the user needs to perform image annotation again to assign

these new textual terms to all the personal images, when the new text queries provided by the

user are out of the current set of vocabularies. In addition,these image annotation methods do

not provide a metric to rank the images.

IV. TEXTUAL QUERY BASED CONSUMER PHOTO RETRIEVAL

In this Section, we will present our proposed framework on how to utilize a large collection

of web images to assist image retrieval using textual query for consumer photos from personal

collections. It is noteworthy that myriads of web images arereadily available on theInternet.

These web images are usually associated with rich textual descriptions (referred to as surrounding

texts hereon) related to the semantics of the web images. These surrounding texts can be used

to extract high-level semantic labels for the web images without any cost of labor-intensive

annotation efforts. In this framework, we propose to apply such valuable Internet assets to

facilitate textual query based image retrieval. Recall that the consumer photos (from personal
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collections) are usually organized in folders without any indexing structure to facilitate textual

queries. To automatically retrieve consumer photos using textual queries, we choose to leverage

millions of web images and their surrounding texts as the bridge between the domains of the

web images and the consumer photos.

Large Collection of 

Web Images 

(with surrounding texts)

Automatic Web Image 

Retrieval

Consumer Photo 

Retrieval

Textual 

Query

Relevance

 Feedback

Raw Consumer Photos

Top-Ranked

Consumer 

Photos

Refined Top-Ranked

Consumer Photos

Classifiers

Relevant/

Irrelevant 

Web Images

WordNet

Fig. 1. Textual Query Based Consumer Photo Retrieval System.

A. Proposed Framework

The architecture of our proposed framework is depicted in Figure 1. It consists of several

machine learning modules. The first module of this frameworkis automatic web image retrieval,

which first interprets the semantic concept of textual queries by a user. Based on the semantic

concept andWordNet, the sets of relevant and irrelevant web images are retrieved from the

web image database using the inverted file method [44]. The second module then uses these

relevant and irrelevant web images as a labeled training setto train classifiers (such askNN,

decision stumps, SVM, and boosting). These classifiers are then used to retrieve potentially

relevant consumer photos from personal collections. To further improve the retrieval performance,

relevance feedback and cross-domain learning techniques are employed in the last module to

refine the image retrieval results.

B. Automatic Web Image Retrieval

In this framework, we first collect a large set of web images with surrounding texts related to

a set of almost all the daily-life semantic conceptsCw from Photosig.com. Stop-word removal

is also used to remove fromCw the high-frequency words that are not meaningful. Then, we
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assume such a large-scale web image database contains sufficient images to cover almost all the

daily-life semantic concepts in a personal collection. Then, we construct the inverted file, which

has an entry for each wordq in Cw, followed by a list of all the images that contain the word

q in the surrounding texts.

For any textual queryq, we can efficiently retrieve all web images whose surrounding texts

contain the wordq by using the pre-constructed inverted file. These web imagescan be deemed as

relevant images. For irrelevant web images, we useWordNet[15], [35], which models semantic

relationships for commonly-used words, to define the setCs as the descendant texts ofq. Figure 2

shows the subtree representing the two-level descendants of the keyword “water” inWordNet.

Based on this subtree, one can retrieve all irrelevant web images that do not contain any word

in Cs in the surrounding texts. Thereafter, we can denote these automatically annotated (relevant

and irrelevant) web images asDw = (xw
i , y

w
i )|

nw

i=1, wherexw
i is theith web image andywi ∈ {±1}

is the label ofxw
i .

C. Consumer Photo Retrieval

As discussed in Section IV-B, with the surrounding texts, wecan automatically obtain

annotated web imagesDw based on the textual query. These annotated web images can be

used as the training set for building classifiers. Any classifiers (such as SVM or Boosting) can

be used in our framework. However, considering that the sizeof the web images inDw can be

up to millions, direct training of complex classifiers (e.g., nonlinear SVM and Boosting) may

not be feasible for real-time consumer photo retrieval. We therefore choose three simple but

effective classifiers, namelyk Nearest Neighbor classifier, decision stump ensemble classifier,

and linear SVM classifier. Note that boosting using decisionstumps has shown the state-of-the-

art performance in face detection [37], in which the training of boosting classifier is performed

in an offline way. Boosting is not suitable for our real-time online photo retrieval application

because of its high computational cost.

1) k Nearest Neighbors:For the given relevant web images inDw (i.e., web images with

ywi = 1), the simplest method to retrieve the target consumer photos is to compute the average

distance between each consumer photo and itsk nearest neighbors (kNN) from the relevant web

images (says,k = 300). Then, we rank all consumer photos with respect to the average distances

to their k nearest neighbors.
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water

meltwater freshwater

rain condensate

……

……

Fig. 2. The subtree representing the two-level descendantsof “water” in WordNet.

2) Asymmetric Bagging with Decision Stumps:Note that thekNN approach cannot account

for the irrelevant photos for consumer photo retrieval. To improve the retrieval performance,

we also use the relevant and irrelevant web images inDw to train a decision stump ensemble

classifier. In particular, the size of the irrelevant images(up to millions) can be much larger

than that of the relevant images, so the class distribution in Dw can be extremely unbalanced.

To avoid such a highly skewed distribution in the annotated web images, following the method

proposed in [33], we randomly sample a fixed number of irrelevant web images as the negative

samples, and combine with the relevant web images as the positive samples to construct a smaller

training set.

After sampling, a decision stumpfd(x) = h(sd(xd − θd)) is learned by finding the sign

sd ∈ {±1} and the thresholdθd ∈ < of thedth featurexd of the inputx such that the threshold

θd separates both classes with a minimum training errorεd on the smaller training set. For

discrete output,h(x) is the sign function, that is,h(x) = 1 if x > 0; andh(x) = −1, otherwise.

For continuous output,h(x) can be defined as the symmetric sigmoid activation function,i.e.,

h(x) = 1−exp(−x)
1+exp(−x)

. We observe that it is difficult to rank the consumer photos byusing discrete

output because the responses of many consumer photos are thesame in this case. In this work,

we therefore use the continuous output ofh(x). The thresholdθd can be determined by sorting

all samples according to the featurexd, and scanning the sorted feature values. In this way, the

decision stump can be found efficiently. Next, the weighted ensembles of these decision stumps

are computed for prediction, i.e.,

f s(x) =
∑

d

γdh(sd(xd − θd)), (1)

where the weightγd for each stump is set to0.5− εd andεd is the training error rate of thedth

decision stump classifier. Note thatγd is further normalized such that
∑

d γd = 1.
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To remove the possible side effect of random sampling of the irrelevant images, the whole

procedure is repeatedns times by using different randomly sampled irrelevant web images.

Finally, the average output is used for robust consumer photo retrieval. This sampling strategy

is also known as Asymmetric Bagging3 [33].

After asymmetric bagging with decision stumps, there arensnd decision stumps. We remove

the 20% decision stumps with the largest training error rates. This removal process generally

preserves the most discriminant decision stumps, and at thesame time accelerates the initial

photo retrieval process.

3) Asymmetric Bagging with Linear SVM:While decision stump ensemble classifier can

effectively exploit both relevant and irrelevant web photos in Dw, it is inefficient to use this

classifier on a large consumer photo dataset because all the decision stumps need to be applied

on every test photo in the testing stage. Suppose we trainnsnd decision stump classifiers, where

nd is the feature dimension andns is the random sampling times for generating the negative

samples in asymmetric bagging. Then, for each test image, all the decision stumps need to be

applied in the test stage, which means the floating value comparison and the calculation of

exponential function in symmetric sigmoid function will beperformed for0.8nsnd times even

after removal of 20% decision stumps with the largest training error rates. Moreover, one decision

stump classifier only account for one single dimension of thewhole feature space. Thus, each

individual classifier may be still too weak.

To facilitate large scale consumer photo retrieval, we propose to use linear SVM classifier

based on loosely labeled web images. Considering that the total number of irrelevant web images

is much larger than that of relevant web images, we also construct a smaller training set by

combining the positive web images and randomly sampled negative web images. As suggested

in [20], feature vectors are normalized into unit hyper-spheres in the kernel space4. Assume

that fSVM(x) = w′

sx + bs is the decision classifier, we then train the linear SVM classifier by

3In [33], the base classifier used in asymmetric bagging is non-linear SVM.

4For linear SVM, normalization in kernel space is equivalentto normalization in input space.
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minimizing the following objective functional:

1

2
‖ws‖

2 + CSVM

∑

i

ξi

s.t. ywi (w
′

sx
w
i + bs) ≥ 1− ξi, (2)

whereξi is the slack variable andCSVM is the tradeoff parameter.

We also repeat the whole procedure forns times by using different random samples of

irrelevant web images. Finally, the average output is used for robust consumer photo retrieval:

f s(x) =
∑

s

γsg(w
′

sx+ bs) (3)

whereγs = 0.5 − εs, εs is the training error of thes-th linear SVM classifier, andg(x) is the

sigmoid activation function. Again,γs is normalized such that
∑

s γs = 1.

4) Decision Stumps vs. Linear SVM:With the samens, in general, it takes more time to train

a linear SVM classifier than a decision stump ensemble classifier. However, the prediction of

asymmetric bagging with linear SVM is much faster. For each test data, there are onlyns times

of the calculation of exponential function in (3). Moreover, in the experiments, we observe that

linear SVM usually achieves comparable or even better retrieval performances, possibly because

it simultaneously considers multiple feature dimensions.Therefore, we generally prefer linear

SVM for large-scale consumer photo retrieval.

D. Relevance Feedback via Cross-Domain Learning

With Relevance Feedback (RF), we can obtain a limited numberof relevant and irrelevant

consumer photos from the user to further refine the image retrieval results. However, the feature

distributions of photos from different domains (web imagesand consumer photos) may differ

considerably and thus have very different statistical properties (in terms of mean, intra-class and

inter-class variance). To differentiate the images from these two domains, we define the labeled

and unlabeled data from the consumer photos asDT
l = (xT

i , y
T
i )|

nl

i=1 and DT
u = xT

i |
nl+nu

i=nl+1,

respectively, whereyTi ∈ {±1} is the label ofxT
i . We further denoteDw as the data set from

the source domain, andDT = DT
l ∪ DT

u as the data set from the target domain with the size

nT = nl + nu.
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1) Cross-Domain Learning:To utilize all training data from both consumer photos (target

domain) and web images (source domain) for image retrieval,one can apply cross-domain

learning methods [45], [46], [11], [7], [23], [12], [13]. Yang et al.[46] proposed Adaptive Support

Vector Machine (A-SVM), where a new SVM classifierfT (x) is adapted from an existing

auxiliary SVM classifierf s(x) trained with the data from the source domain. Specifically, the

new decision function is formulated as:

fT (x) = f s(x) + ∆f(x), (4)

where the perturbation function∆f(x) is learned using the labeled dataDT
l from the target

domain. As shown in [46], the perturbation function can be learned by solving quadratic pro-

gramming (QP) problem which is similar to that of SVM.

Besides A-SVM, many existing works on cross-domain learning attempted to learn a new

representation that can bridge the source domain and the target domain. Jianget al.[23] proposed

cross-domain SVM (CD-SVM), which usesk-nearest neighbors from the target domain to define

a weight for each auxiliary pattern, and then the SVM classifier is trained with re-weighted

samples. Daumé III [11] proposed the Feature Augmentationmethod to augment features for

domain adaptation. The augmented features are used to construct a kernel function for kernel

methods. It is important to note that most cross-domain learning methods [45], [46], [11], [23]

do not consider the use of unlabeled data in the target domain. Recently, Duanet al.proposed

a cross-domain kernel-learning method, referred to as Domain Transfer SVM (DTSVM) [12],

and a multiple-source domain adaptation method called Domain Adaptation Machine (DAM)

[13]. These methods can be readily used to exploit the data from both source domain and target

domain for relevance feedback component in our general photo retrieval framework. However,

these methods are either variants of SVM or in tandem with non-linear SVM or other kernel

methods. Therefore, these methods are not efficient enough for large-scale retrieval applications.

Therefore, we propose two effective and efficient cross-domain methods for relevance feedback.

2) Cross-Domain Combination of Classifiers:To further improve photo retrieval performance,

a brute-force solution is to combine the web images and the annotated consumer photos to re-

train a new classifier. However, the feature distributions of photos from different domains are

drastically different, causing such classifier to perform poorly. Moreover, it is also inefficient

to re-train the classifier using the data from both domains for online relevance feedback. To
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significantly reduce the training time, the decision stump ensemble classifier and the linear

SVM classifierf s(x) discussed in Section IV-C can be reused as the auxiliary classifier for

relevance feedback. Here, we propose a simple cross-domainlearning method, referred to as

Cross-Domain Combination of Classifiers (CDCC), by simply combining the source classifier

learned from the labeled data in the source domainDw, and the target classifier (non-linear SVM

with RBF kernel, referred to as SVMT) learned from limited labeled data in the target domain

DT
l . The output of SVMT is also converted into the range[−1, 1] by using the symmetric

sigmoid activation function and then the outputs of source classifier and SVMT are combined

with equal weights.

Schweikert et al. [31] also proposed to combine the source classifier and the target classifier

for cross-domain learning. However, the source classifier used in their work is non-linear SVM

with RBF kernel. It will be shown in our experiments such non-linear SVM cannot be used as

the source classifier in this application because it cannot achieve real-time retrieval performance

even on a small test dataset. Moreover, our system is the firstwork to apply Cross-Domain

Combination of Classifiers for relevance feedback in photo retrieval applications.

3) Cross-Domain Regularized Regression:Besides CDCC, we also introduce a new learning

method, namely Cross-Domain Regularized Regression (CDRR). In the following, we denote the

transpose of vector or matrix by a superscript′. For thei-th samplexi, we denotefT
i = fT (xi)

and f s
i = f s(xi), where fT (x) is the target classifier andf s(x) is the pre-learnt auxiliary

classifier. Let us also denotefT
l = [fT

1 , . . . , f
T
nl
]′ and yT

l = [yT1 , . . . , y
T
nl
]′. The empirical risk

functional offT (x) on the labeled data in the target domain is:
nl
∑

i=1

(fT
i − yTi )

2 = ‖fT
l − yT

l ‖
2. (5)

For the unlabeled target patternsDT
u in the target domain, let us define the decision values

from the target classifier and the auxiliary classifier asfT
u = [fT

nl+1, . . . , f
T
nT
]′ and f s

u =

[f s
nl+1, . . . , f

s
nT
]′, respectively. We assume that the target classifierfT (x) should have similar

decision values as the pre-computed auxiliary classifierf s(x) [13]. We propose a regularization

term to enforce the constraint that the label predictions ofthe target decision functionfT (x)

on the unlabeled dataDT
u in the target domain should be similar to the label predictions by the
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auxiliary classifierf s(x) (see Figure 3),i.e.,

1

2nu

nT
∑

i=nl+1

(fT
i − f s

i )
2 =

1

2nu

‖fT
u − f s

u‖
2. (6)

We simultaneously minimize the empirical risk of labeled patterns in (5) and the penalty term

in (6). The proposed method is then formulated as follows:

min
fT

Ω(fT ) + C

(

λ‖fT
l − yT

l ‖
2 +

1

2nu

‖fT
u − f s

u‖
2

)

, (7)

whereΩ(fT ) is a regularizer to control the complexity of the target classifier fT (x), the second

term is the prediction error of the target classifierfT (x) on the target labeled patternsDT
l , and

the last term controls the agreement between the target classifier and the auxiliary classifier on

the unlabeled samples inDT
u , andC > 0 andλ > 0 are the tradeoff parameters for the above

three terms. Note that we use the factor1
2nu

in the last term because we have very limited labeled

data (less than 10 samples in our experiments) and much more unlabeled consumer photos.

Labeled

Photos

Auxiliary

Classifier

Unlabeled 

Photos

Consumer 

Photos

Relevant/

Irrelevant

Web Images

Prediction

Training

Fig. 3. Illustration of Cross-Domain Regularized Regression.

Assume that the target decision function is a linear regression function,i.e., fT (x) = w′x for

image retrieval, and the regularizer asΩ(fT ) = 1
2
‖w‖2, the optimal projection vectorw in the

structural risk functional (7) can be solved by a linear system:
(

I+ CλXlX
′

l +
C

nu

XuX
′

u

)

w = CλXly
′

l +
C

nu

Xuf
s
u, (8)

whereXl = [xT
1 , . . . ,x

T
nl
] andXu = [xT

nl+1, . . . ,x
T
nT
] are the data matrix of labeled and unlabeled

consumer photos, andI is the identify matrix. Finally, we have the closed-form solution:

w =

(

I+ CλXlX
′

l +
C

nu

XuX
′

u

)

−1(

CλXly
′

l +
C

nu

Xuf
s
u

)

. (9)
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4) Incremental Cross-Domain Regularized Regression:In the past several years, many incre-

mental learning methods [1], [4] have been proposed for dimension reduction and classification.

In this work, we propose an incremental cross-domain learning method, referred to as Incre-

mental Cross-Domain Regularized Regression (ICDRR), to significantly accelerate the relevance

feedback process in large-scale consumer photo retrieval.

In our ICDRR, we incrementally update two matricesA1 = XlX
′

l , A2 = XuX
′

u and two

vectorsb1 = Xly
′

l, b2 = Xuf
s
u in Eq. (9). Let us denoteA1, A2, b1, b2 in the r-th round

of relevance feedback asA(r)
1 , A(r)

2 , b(r)
1 , b(r)

2 , respectively. Before relevance feedback (i.e., the

0-th round), we initializeA(0)
1 = 0, A(0)

2 = XX ′, b(0)
1 = 0, b(0)

2 = Xf s, whereX is the data

matrix of all consumer photos,f s is the output of source classifier on all consumer photos. In

the r-th round of relevance feedback, we then incrementally update A1, A2, b1 andb2 by:

A
(r)
1 = A

(r−1)
1 + (∆X)(∆X)′ (10)

A
(r)
2 = A

(r−1)
2 − (∆X)(∆X)′ (11)

b
(r)
1 = b

(r−1)
1 + (∆X)(∆y) (12)

b
(r)
2 = b

(r−1)
2 − (∆X)(∆f s). (13)

In the above equations,∆X ∈ R
nd×nc, ∆y ∈ R

nc and∆f s ∈ R
nc are the data matrix, label

vector, and the response vector from source classifier of thenewly labeled consumer photos in

the current round, wherenc is the number of user-labeled consumer photos in this round.The

user only labels a very limited number of consumer photos in each round of relevance feedback,

the computational cost for updatingA(r)
1 , A(r)

2 , b(r)
1 and b

(r)
2 becomes trivial in our ICDRR.

Moreover,A(0)
2 = XX ′ can be computed offline because it does not depend on the source

classifier, andb(0)
2 = Xf s can be computed when the user inspects the initial retrievalresult (it

costs less than 0.15 seconds with one single CPU thread even on the largeNUS-WIDEdataset

with about 270K images). Therefore in our experiments, we donot count the time for calculating

A
(0)
2 andb(0)

2 . It will be shown in the experimental results that ICDRR significantly accelerates

the relevance feedback process for large scale photo retrieval.

V. EXPERIMENTS

We evaluate the performance of our proposed framework for textual query based consumer

photo retrieval. First, we compare the initial retrieval performances ofkNN classifier, decision
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stump ensemble classifier, and linear SVM classifierwithout using relevance feedback. Second,

we evaluate the performance of our proposed cross-domain relevance feedback methods CDCC

and CDRR.

A. Dataset and Experimental Setup

We have downloaded about 1.3 million photos from the photo forum Photosig as the training

dataset. Most of the images are accompanied by rich surrounding textual descriptions (e.g., title,

category and description). After removing the high-frequency words that are not meaningful (e.g.,

“the”, “photo”, “picture”), our dictionary contains 21,377 words, and each image is associated

with about five words on the average. Similarly to [42], we also observed that the images in

Photosig generally are high quality with the sizes varying from 300 × 200 to 800 × 600. In

addition, the surrounding descriptions reasonably describe the semantics of the corresponding

images.

We test the performance of our retrieval framework on two datasets. The first test dataset is

derived (under a usage agreement) from the Kodak Consumer Video Benchmark Dataset [28],

which was collected by Eastman Kodak Company from about 100 real users over the period of

one year. In this dataset, 5,166 key-frames (the image sizesvary from 320× 240 to 640× 480)

were extracted from 1,358 consumer video clips. Key-frame based annotation was performed by

the students at Columbia University to assign binary labels(presence or absence) for each visual

concept. 25 semantic concepts were defined, including 22 visual concepts and three audio-related

concepts (i.e.,“singing” , “music” and “cheer”). We also merge two concepts “groupof two” and

“group of threeor more” into a single concept “people” for the convenience of searching the

relevant and irrelevant images from the Photosig web image dataset. Observing that the key

frames from the same video clip can be near duplicate images,we select only the first key frame

from each video clip in order to perform a fair comparison of different algorithms. In total, we

test our framework on 21 visual concepts and with 1,358 images.

The second dataset isNUS-WIDE[8], which was recently collected by the National University

of Singapore (NUS). In total, this dataset has 269,648 images and their ground-truth annotations

for 81 concepts. The images inNUS-WIDEdataset are downloaded from the online consumer

photo sharing website Flickr.com. We chooseNUS-WIDE dataset because it is the largest

annotated consumer photo dataset available to researcherstoday, and is suitable for testing the
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performances of our framework for large-scale photo retrieval. Moreover, it is also meaningful to

use this dataset to test the retrieval precisions of our cross-domain relevance feedback methods

CDCC and CDRR because the data distributions of photos downloaded from different websites

(i.e., Photosig.com and Flickr.com) are still different. It is also worth mentioning that the images

in NUS-WIDEare used as raw photos, in other words, we do not consider the associated tag

information in this work.

In our experiments, we use three types of global features. For Grid Color Moment (GCM), we

extract the first three moments of three channels in the LAB color space from each of the5× 5

fixed grid partitions, and aggregate the features into a single 225-dimensional feature vector. The

Edge Direction Histogram (EDH) feature includes 73 dimensions with 72 bins corresponding

to edge directions quantized in five angular bins and one bin for non-edge pixels. Similar to

[8], we also extract 128-D Wavelet Texture (WT) feature by performing Pyramid-structured

Wavelet Transform (PWT) and Tree-structured Wavelet Transform (TWT). Finally, each image

is represented as a single426-D vector by concatenating the three types of global features. Please

refer to [8] for more details about the features. While it is possible to use other local features,

such as SIFT descriptors, we use the above global features because they can be efficiently

extracted over the large image corpus and they have been shown to be effective for consumer

photo annotation in [6], [8]. It is also convenient for fair assessment of other known systems

that use the same types of visual features.

For the training datasetphotosig, we calculate the original mean valueµd and standard

deviationσd for each dimensiond, and normalize all dimensions to zero mean and unit variance.

We also normalize the test datasets (i.e., Kodak and NUS-WIDE) by using µd and σd. In

our experiment, all algorithms are implemented with C++. Matrix and vector operations are

performed using the Intel Math Kernel Library 10. Experiments are performed on a server

machine with dual Intel Xeon 3.0GHz Quad-Core CPUs (eight threads) and 16GB Memory. In

time cost analysis, we do not consider the time of loading thedata from the hard disk because

the data can be loaded for once and then used for subsequent queries.

B. Retrieval without Relevance Feedback

Considering that the queries by the CBIR methods and our framework are different in nature,

we cannot compare our work directly with the existing CBIR methods before relevance feedback.
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Fig. 4. Number of randomly selected positive samples for each concept in the training web image database.

We also cannot compare the retrieval performance of our framework directly with web data-based

annotation methods, because of the following two aspects: 1) These prior works [25], [35], [36],

[38], [41], [42] only output binary decisions (presence or absence) without providing a metric to

rank the personal photos; 2) An initial textual term is required before image annotation in [22],

[41], [42] and their annotation performances depend heavily on the correct textual term, making

it difficult to compare their methods fairly with our automatic technique. However, we notice

that the previous web data-based image annotation methods [25], [35], [36], [38], [41], [42] all

usedkNN classifier for image annotation, possibly owning to its simplicity and effectiveness.

Therefore, we directly compare the retrieval performance of decision stump ensemble classifier,

linear SVM classifier, and the baselinekNN classifier.

Suppose a user wants to use the textual queryq to retrieve the relevant personal images.

For both methods, we randomly selectnp = min(10000, nq) positive web images fromphotosig

dataset, wherenq is the total number of images that contain the wordq in the surrounding textual

descriptions.Kodak and NUS-WIDEcontains 94 distinct concepts in total (“animal”, “beach”,

“boat”, “dancing”, “person”, “sports”, “sunset” and “wedding” appear in both datasets). The

average number of selected positive samples of all the 94 concepts is 3088.3, and Figure 4 plots

the number of positive samples for each concept.

To improve the speed and reduce the memory cost, we perform Principal Component Analysis

(PCA) using all the images in the photosig dataset. We also investigate the performances of two

possible fusion methods to fuse three types of global features in this application.

• Early Fusion: We concatenate the three types of features before performing PCA. We

observe that the firstnd = 103 principal components are sufficient to preserve90% energy.
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After dimension reduction, all the images in training and test datasets are projected into the

103-D space for further processing.

• Late Fusion: We perform PCA on three types of features independently. Weobserve that

the firstnd1 = 91, nd2 = 24, nd3 = 5 principal components are sufficient to preserve90%

energy for GCM, EDH and WT features, respectively. Then, these three types of features of

all the images in the training and test datasets are projected to nd1-D, nd2-D, nd3-D space

after dimension reduction. We train independent classifiers based on each type of feature.

Finally, the classifiers from different features are linearly combined with the combination

weights determined based on the training error rates.

For each fusion method, we compare the following three methods:

• kNN S: We only use the positive images from the web-image databaseas the training data.

For each consumer photo from the testing dataset, we find the top-k nearest neighbors in the

positive images, and use the average distance to measure therelevance between the textual

query to the testing consumer photo. In the experiment, we set k = 200. We also perform

exhaustive exactkNN search accelerated by SIMD CPU instructions and multiplethreads.

For kNN based method with late fusion, we combine the outputs of all kNN classifiers with

equal weights because the training error rate ofkNN classifier on each type of feature is

unknown in this case. In the sequel, we denotekNN S with early fusion and late fusion by

kNN SE andkNN SL, respectively.

• DS S: We randomly choosenp negative samples forns times, and in total we trainnsnd

decision stumps for early fusion (referred to as DSSE) or3nsnd (referred to as DSSL) for

late fusion. After removing the 20% decision stumps with thelargest training error rates,

we apply0.8nsnd or 2.4nsnd decision stumps for the testing stage in DSSE and DSSL,

respectively.

• LinSVM S: We also randomly choosenp negative samples forns times. In total, we train

ns linear SVM classifiers for early fusion (referred to as LinSVM SE) or3ns classifiers for

late fusion (referred to as LinSVMSL). In this work, we use tools from LibLinear [14] in

our implementations and use the default value 1 for the parameterCSVM .

There are 21 and 81 concept names from theKodak dataset andNUS-WIDEdataset, respec-

tively. They are used as textual queries to perform image retrieval. Precision (defined as the
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percentage of relevant images in the topI retrieved images) is used as the performance measure

to evaluate the retrieval performance. Since online users are usually interested in the top ranked

images only, we setI as 20, 30, 40, 50, 60 and 70 for this study, similarly to in [33].

1) Comparison of precision:We tested all the methods above for initial retrieval without using

relevance feedback. ForKodak dataset, we set the random sampling timesns for generating

negative samples as 50 for DSSE and DSSL, and 10 for LinSVMSE and LinSVMSL in

order to make the running time of initial retrieval process under 1 second. The precisions of all

methods are shown in Figure 5. We observe that DSSE, DSSL, LinSVM SE and LinSVMSL

are much better thankNN SE andkNN SL. This is possibly becausekNN SE andkNN SL

only utilize the positive web images while other methods take advantage of both the positive

and negative web images to train the more robust classifiers.Moreover, the average values of the

top-20,30,40,50,60 and 70 precisions from LinSVMSL, DS SL, LinSVM SE and DSSE, are

14.50%, 14.47%, 14.39% and 14.21%, respectively. We conclude that the linear SVM classifier

and decision stump ensemble classifier achieve comparable retrieval performances on theKodak

dataset.
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Fig. 5. Retrieval precisions usingkNN classifier, decision stump ensemble classifier, and linear SVM classifier on the Kodak

dataset (1358 images, 21 concepts).

To better compare the performances of different algorithms, we also test them on the large

NUS-WIDEdataset. In Figure 6, we plot the precision variations of different algorithms with

respect to different values ofns, in which ns is set to 1,3,5,7 and 10. We have the following

observations:

1) Again, kNN SE andkNN SL achieve much worse performances, when compared with the
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Fig. 6. Retrieval precisions usingkNN classifier, decision stump ensemble classifier, and linear SVM classifier on NUS-WIDE

dataset (269,648 images, 81 concepts). Since the precisions of kNN SE andkNN SL are irrelevant with respect tons , their

precisions are presented with dashed curves.

Fig. 7. Top-10 retrieval results for query “water” on the Kodak dataset. Incorrect retrieval results are highlighted with green

boxes.

other four algorithms. LinSVMSL generally achieves the best results and it is slightly better

than DSSL in most cases.

2) Whenns increases, DSSE, DSSL, LinSVM SE, and LinSVMSL improve in most cases,

which is consistent with the recent work [33].

3) It is interesting to observe that LinSVMSE is the worst among four algorithms related to

linear SVM and decision stump ensemble classifiers. We employ three types of features (color,

edge and texture) in this work and it is well known that none ofthem can work well for all

concepts. LinSVMSL, DS SL and DSSE achieve better performance, possibly because they

can fuse and select different type of features or even feature dimensions based on the training

error rates.

4) Except forkNN classifier based algorithms, we also observe that the latefusion based methods

are generally better than the corresponding early fusion based methods for photo retrieval on the

NUS-WIDEdataset.kNN SL is worse thankNN SE. However, inkNN SL, all types of features

are combined with equal weights, namely, feature selectionis not performed inkNN SL.
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(b)

(a)

Fig. 8. Top-10 retrieval results for query “animal” on the NUS-WIDE dataset. (a) Initial results; (b) Results after 1 round of

relevance feedback (one positive and one negative images are labeled in each round). Incorrect results are highlightedby green

boxes.

A visual example is shown in Figure 7. We use the keyword “water” to retrieve images from

the Kodakdataset using LinSVMSL with 10 SVM classifiers. Note that this query isundefined

in the concept lexicon of theKodak dataset. Our retrieval system produces eight diverse yet

relevant images out of the top 10 retrieved images. One more visual example of our system using

LinSVM SL with 10 SVM classifiers is shown in Figure 8(a). We use the keyword “animal” to

retrieve images from theNUS-WIDEdataset (“animal” is defined in the concept lexicon ofNUS-

WIDE). Our retrieval system produces six relevant images out of the top 10 retrieved images. In

the subsequent subsection, we will show that our proposed CDRR relevance feedback method

can significantly improve the retrieval performance (See Figure 8(b)).

2) Comparison of running time:We also compare the running time of all algorithms on the

two datasets. In this work, each decision stump classifier and SVM classifier can be trained and

used independently, and exhaustivekNN search is also easy to parallelize. We therefore use a

simple but effective parallelization scheme, OpenMP, to take advantages of eight threads of our

server for each method.

On theKodakdataset,kNN SE andkNN SL spend 0.872 and 1.033 seconds, respectively, for

the initial retrieval process. DSSE and DSSL with ns = 50, LinSVM SE and LinSVMSL with

ns = 10 spend 0.912, 0.969, 0.830, and 0.852 seconds, respectively. All methods can achieve

real-time retrieval performance on this small dataset.

The comparison of the running time on theNUS-WIDEdataset is plotted in Figure 9. On this

dataset,kNN SE andkNN SL spend 213.35 and 225.73 seconds, respectively. We implement

kNN based on exhaustive search, thus it takes much more time when compared with decision

stump ensemble classifier and linear SVM classifier. Whenns is 10, the total running time

of LinSVM SE, LinSVM SL, DS SE and DSSL are 0.782, 0.878, 1.373 and 1.575 seconds,
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Fig. 9. Time cost of retrieval using decision stumps and SVMswith linear kernel on NUS-WIDE dataset (269,648 images, 81

concepts). Note that “total time” stands for the sum of training time and testing time.

respectively. We also observe that LinSVMSE and LinSVMSL generally cost more time

than DSSE and DSSL in the training stage. However, the testing stage of LinSVM SE and

LinSVM SL is much faster, making the total running time of initial retrieval process much

shorter than DSSE and DSSL.

3) Discussions:From the experiments on theKodak dataset, we observe that linear SVM

and decision stump ensemble classifiers based methods are generally comparable in terms of

initial retrieval precision and speed. Since all the algorithms can achieve real-time speed, any of

them can be used for initial retrieval on a small dataset. However, for large-scale photo retrieval,

LinSVM SL is preferred for the initial retrieval process because ofits effectiveness and real-time

response.

C. Retrieval with Relevance Feedback (RF)

In this subsection, we evaluate the performance of a few relevance feedback methods. For fair

comparison, we choose LinSVMSL with 10 SVM classifiers, the best algorithm in terms of over-

all performances (See Section V-B), for initial retrieval before relevance feedback. LinSVMSL

is also accordingly chosen as the source classifier in our methods CDCC and CDRR. From here

on, we also refer to CDCC as LinSVMSL+SVM T, in which the responses from LinSVMSL

and SVM T are equally combined. In our LinSVMSL+SVM T, CDRR and two conventional

manifold ranking and SVM based relevance feedback algorithms [17], [47], we also adopt the

late fusion scheme used in LinSVMSL to integrate the three types of global features, namely,

the three types of features are used independently at first and the decisions or responses are

finally fused. The early fusion approach is used for the priorcross-domain learning method

A-SVM [46] because it is faster.
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We compare our LinSVMSL+SVM T method and CDRR with the following methods:

1) SVM T: SVM has been used for RF in several existing CBIR methods [33], [34], [47]. We

train non-linear SVM with an RBF kernel based on the labeled images in the target domain,

which are marked by the user in the current and all previous rounds. We use LibSVM package

[5] in our implementation and use its default setting for RBFkernel (i.e. C is set as 1 andγ in

RBF kernel is set as1
91

, 1
24

and 1
5

for GCM, EDH and WT features, respectively).

2) MR: Manifold Ranking (MR) is a semi-supervised RF method proposed in [17]. The two

parametersα andγ for this method are set according to [17].

3) A-SVM: Adaptive SVM (A-SVM) is a recently proposed method [46] forcross-domain

learning as described in Section IV-D.1, in which SVM based on an RBF kernel is used as the

source classifier to obtain the initial retrieval results. The parameter setting is the same as that

in SVM T. Considering the running time of A-SVM is much higher than other methods even

on the smallKodakdataset, we do not test it on the largeNUS-WIDEdataset because it cannot

achieve real time response.

As in other methods [17], [46], [47], several parameters needed to be decided beforehand.

In LinSVM SL+SVM T, we need to determine the parameters in SVMT and we use the same

parameters setting as that in SVMT. For CDRR, we empirically fixC = 70.0 and setλ = 0.05

on theKodakdataset andλ = 0.02 on theNUS-WIDEdataset. In addition, we also observe that

CDRR generally achieves better performance, if we respectively setyTi = 1 andyTi = −0.1 for

positive and negative consumer photos, when compared with the settingyTi = 1 andyTi = −1. We

setyTi = −0.1 for negative images because the negative images marked by the user in relevance

feedback are still top ranked images, namely, these images are not theextremelynegative images.

Note that similar observations are also reported in [17]. Itis still an open problem to automatically

determine the optimal parameters in CDRR, which will be investigated in the future.

1) Comparison of precision:In real circumstances, users typically would be reluctant to

perform many rounds of relevance feedback or annotate many images for each round. Therefore,

we only report the results from the first four rounds of feedback. In each feedback round, the top

one relevant image (i.e., the highest ranked image with the same semantic concept as the textual

query) is marked as a positive feedback sample from among thetop 40 images. Similarly, one

negative sample is marked out of the top 40 images. In Figure 8(b), we show top-10 retrieved

images after 1 round of relevance feedback for the query “animal” on theNUS-WIDEdataset.
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Fig. 10. Retrieval results after relevance feedback(one positive and one negative feedbacks per round) on the Kodak dataset

(1358 images, 21 concepts).

We observe that the results are improved considerably afterusing our proposed CDRR relevance

feedback algorithm. Figures 10 and Figure 11 compare different relevance feedback methods on

the Kodakdataset and theNUS-WIDEdataset, respectively.

From these results, we have the following observations:

1) Our CDRR and LinSVMSL+SVM T outperform the conventional RF methods SVMT and

MR, because of the successful utilization of the images fromboth domains. When comparing

CDRR with SVM T and MR, the relative precision improvements after RF are more than 14.7%

and 13.5% on theKodak andNUS-WIDEdatasets, respectively. CDRR is generally better than

or comparable with LinSVMSL+SVM T, and the retrieval performances of our CDRR and

LinSVM SL+SVM T increase monotonically with more labeled images providedby the user in

most cases. For CDRR, we believe that the retrieval performance can be further improved by

using non-linear function in CDRR. However, it is a non-trivial task to achieve the real-time

retrieval performance with an RBF kernel function. This will be investigated in the future.

2) For SVM T, the retrieval performance drops after the first round of RF, but increase from the

second iteration. The explanation is that SVMT trained based on two labeled training images

is not reliable, but its performance can improve when more labeled images are marked by the

user in the subsequent feedback iterations.
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Fig. 11. Retrieval results after relevance feedback(one positive and one negative feedbacks per round) on the NUS dataset

(269,648 images, 81 concepts).

Method ICDRR CDRR LinSVM SL+SVM T SVM T MR A-SVM

Time 0.015 0.032 0.015 0.015 0.037 9.92

TABLE I

AVERAGE CPU TIME (IN SEC.) OF RELEVANCE FEEDBACK(PER ROUND) ON THE KODAK DATASET.

3) Semi-supervised learning method MR can improve the retrieval performance only in some

cases on theKodak dataset, possibly because the manifold assumption does nothold well for

unconstrained consumer images.

4) The performance of A-SVM is slightly improved after usingRF in most cases. It seems

that the limited number of labeled target images from the user are not sufficient to facilitate

robust adaptation for A-SVM. We also observe that initial results of A-SVM is better than other

algorithms on theKodakdataset because of the utilization of non-linear SVM for initialization.

However, it takes 324.3 seconds with one thread for the initial retrieval process even on the

small-scaleKodak dataset, making it infeasible for practical image retrieval applications even

with eight threads.

2) Comparison of running time:In this Section, we compare the running time of all relevance

feedback algorithms used in our experiment. Considering that all the algorithms except A-SVM

and MR on theNUS-WIDEdataset are very responsive, we test all the algorithms by using only
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Method ICDRR CDRR LinSVM SL+SVM T SVM T MR

Time 0.110 1.534 1.277 1.277 60.533

TABLE II

AVERAGE CPUTIME (IN SEC.) OF RELEVANCE FEEDBACK(PER ROUND) ON THE NUS-WIDE DATASET.

one single thread for relevance feedback.

The comparison of time cost on theKodakdataset is shown in Table I. All methods except A-

SVM are able to achieve the interactive speed on this small dataset. In addition, the incremental

cross-domain learning method ICDRR is faster than CDRR.

In Table II, we report the running time of different algorithms on theNUS-WIDEdataset. MR

is no longer responsive in this case because the label propagation process based on the graph with

much more vertices becomes much slower. The RF process of CDRR and LinSVMSL+SVM T

(or SVM T) is still responsive (1.534 seconds and 1.277 seconds only), because we only need

to train SVM with less than 10 training samples for LinSVMSL+SVM T and SVM T or solve

a linear system for CDRR.

Moreover, ICDRR only takes about 0.1 seconds per round afterincrementally updating the

corresponding matrices, which is much faster than CDRR. We also observe that the running

time of LinSVM SL+SVM T (or SVM T) increases when the number of user-labeled consumer

photos increases in the subsequent iterations. Specifically, When the user labels 1, 2, 3, 4 positive

consumer photos and the same number of negative photos, LinSVM SL+SVM T (or SVM T)

costs about 0.7, 1.1, 1.5 and 1.9 seconds, respectively. However, ICDRR takes about 0.1 seconds

in all the iterations.

In short, ICDRR can learn the same projection vectorw and achieve the same retrieval

precisions as CDRR, but it is much more efficient than CDRR andLinSVM SL+SVM T for

relevance feedback in large scale photo retrieval.

VI. CONCLUSIONS

By leveraging a large collection of web data (images accompanied by rich textual descriptions),

we have proposed a real-time textual query based personal photo retrieval system, which can

retrieve consumer photos without using any intermediate image annotation process. For a given

textual query, our system can automatically and efficientlyretrieve relevant and irrelevant web
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images using the inverted file method andWordNet. With these retrieved web images as the

training data, we employ three efficient classification methods,kNN classifier, decision stump

ensemble classifier and linear SVM classifier, for consumer photo retrieval. We also propose

two novel relevance feedback methods, namely CDCC and CDRR by utilizing the pre-learned

auxiliary classifier and the feedback images to effectivelyimprove the retrieval performance at

interactive response time. Moreover, an incremental cross-domain learning method, referred to

as ICDRR, is also developed for large scale consumer photo retrieval.

Extensive experimental results on theKodakandNUS-WIDEconsumer photo datasets clearly

demonstrate that decision stump ensemble and linear SVM classifiers based methods are much

better thankNN based methods for initial photo retrieval. Linear SVM classifier based method

is preferred on a large photo dataset likeNUS-WIDE, thanks to its effectiveness and faster

and real-time response. Our experiments also demonstrate that the proposed relevance feedback

approaches CDRR and LinSVMSL+SVM T require an extremely limited amount of feedback

from the user and it outperforms two conventional manifold ranking and SVM based relevance

feedback methods, and Incremental CDRR is much faster than CDRR and LinSVMSL+SVM T

on the largeNUS-WIDEdataset. Moreover, our proposed system can also retrieve consumer

photos with a textual query that is not included in the predefined lexicons.

In summary, we have proposed a general photo retrieval framework by using textual query.

Our work falls into the recent research trend of “Internet Vision” where the massive and valuable

web data including texts and images are used for various computer vision and computer graphics

tasks (e.g., [9], [18], [40]). Other efficient and effectivelearning techniques can be readily

developed and incorporated into our framework to further improve the initial photo retrieval

and relevance feedback. For example, the fast Stochastic Intersection Kernel MAchine (SIKMA)

training algorithm may be used in our framework for initial photo retrieval [40] and non-linear

functions may be employed in CDRR to replace the current linear regression function. In addition,

this framework also lends itself to personal video retrieval because key frames in videos can be

used to retrieve videos readily for non-motion related textual queries. In the long run, such a

framework can also be extended to process action related concepts [26] by explicitly incorporating

motion related features.
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